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Note: All rotations are understood according
to the right-hand rule and rotation matrices
rotate column vectors via pre-multiplication
as v⃗′ = Lv⃗. The axes x⃗1, x⃗2 and x⃗3 form
a right-handed 3D Cartesian coordinate sys-
tem and indexes take up values in the range
i, j, k, l,m, n ∈ {1, 2, 3}.

Problem 1 Tensors

Expand the below expressions as summations using the Einstein convention. Evaluate
the sum assuming that all tensors are constant tensors (every entry in the tensor is
the same number). What is the rank of the resulting tensor?

(i) viwi, where vi = 1 and wi = 2 for all i. Hint: this is the scalar product between
the vectors v⃗ = (1, 1, 1)T and w⃗ = (2, 2, 2)T .

(ii) SijTjk, where Sij = 2 and Tjk = 1 for all i, j and k. Hint: this is a matrix-matrix
product and every matrix entry in T is 1 while every matrix entry in S is 2.

(iii) TijTij, where Tij = 1 for all i and j.

(iv) SijklTij, where Sijkl = 5 and Tij = 2 for all i, j, k and l

(v) write the following matrix operations as Einstein summations: AB, ATB,
Tr[A], Tr[ATB]. Here A and B are 3 × 3 real matrices, Tr[·] is the trace
operation (sum of diagonals) and (·)T is the transpose operation.

. . . . . . . . .
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Problem 2 Active and Passive Rotations

Suppose the homogeneous electric field between two large parallel charged plates is
described by the column vector E⃗ = (

√
3/2,−1/2, 0)T . Suppose we want to find

the rotation matrix that simplifies this vector such that after the transformation
E⃗ ′ = (1, 0, 0)T . The basic rotation matrix around the z axis is defined as

Rz(θ) =

cos θ − sin θ 0
sin θ cos θ 0
0 0 1

 ,

and the transformation it performs can be interpreted either as an active or a passive
rotation.

(i) Active rotation: Imagine we physically rotate the two parallel plates and

thus the electric field rotates as E⃗ ′ = Rz(θ)E⃗. Draw this transformation and
calculate the angle of rotation θ.

(ii) The rotation matrix can also be used to rotate the coordinate axes. Draw the
rotated coordinate axes but using the inverse rotation matrix as x⃗′

i = RT
z (θ)x⃗i.

(iii) Passive rotation: Show that if we leave the charged plates unchanged and
calculate vector entries using the new axes x⃗′

i we obtain the desired vector

E⃗ ′ = (1, 0, 0)T . Hint: the vector entries in the new coordinate system are

calculated using the scalar products as E ′
i = E⃗ · x⃗′

i, where we use the unchanged

vector E⃗ = (
√
3/2,−1/2, 0)T .

. . . . . . . . .

Problem 3 Calculating rotation matrices

Compute the 3× 3 matrices for the following rotations and draw how the coordinate
axes are rotated x⃗′

i = Lx⃗i. Hint: the rotated vectors x⃗′
i form column vectors of L.

(i) −30◦ around the x⃗3 axis. Hint: you can verify the result by comparing to the
definition of the basic rotation matrix in Problem 2.

(ii) 45◦ around the x⃗2 axis

(iii) rotation (i) followed by rotation (ii)

(iv) rotation (ii) followed by rotation (i). Is it is the same as (iii)? Why?

(v) 120◦ about the [111] direction in a cubic crystal

(vi) from the crystal axes of a tetragonal crystal with a = b = 5 and c = 6 (with x⃗3

parallel to the c-axis) rotating around x⃗1 so that Lx⃗3 becomes parallel with the
[011] direction
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(vii) 90◦ about the [110] direction in a cubic crystal

. . . . . . . . .

Problem 4 Crystal symmetry

(i) Explain how anisotropy in a crystal can lead to electrical conductivity whereby
a current flows in a direction that is not parallel to the applied electric field.
Describe how the anisotropic conductivity can be visualised using the represen-
tation quadric.

(ii) The electrical conductivity of a uniaxial crystal when measured along its axis
of symmetry is twice that when measured perpendicular to the axis. In what
direction will the current flow through the crystal if an electric field is applied
at 45◦ to the axis of symmetry? (hint: we have a freedom in defining the electric
field vector, so it simplifies the argument if we choose a simple arrangement)

(iii) A uniaxial crystal has principal electrical conductivities

σPAS
1 = σPAS

2 = 5.6× 104Ω−1m−2, σPAS
3 = 8.2× 104Ω−1m−2.

A rod of the crystal of cross sectional area 1mm2 has its axis of symmetry 60◦

from the crystal axis (as defined by the rotation below). A current of 5mA
passes down the rod such that 0

0
J ′
3

 = J⃗ ′ = σ′E⃗ ′, with J ′
3 = 5× 103Am−1

As we translate between this coordinate system and the principal axis system,
the vector entries transform according to J⃗ ′ = LJ⃗ and E⃗ ′ = LE⃗ where L =
Rx(60

◦) is the basic rotation matrix around the x⃗1 axis with an angle 60◦. Find
the electric field components (a) parallel to and (b) perpendicular to the axis
of the rod. Would it have made any difference if the rotation were performed
around x⃗2 instead?

. . . . . . . . .

Problem 5 Orthogonal matrices

The axes of two Cartesian coordinate systems x⃗1, x⃗2, x⃗3 and x⃗′
1 = Lx⃗1, x⃗

′
2 = Lx⃗2,

x⃗′
3 = Lx⃗3 have the following angular relationships

∡(x⃗1Ox⃗′
1) = 60◦, ∡(x⃗1Ox⃗′

2) = 90◦,

∡(x⃗2Ox⃗′
1) > 90◦, ∡(x⃗2Ox⃗′

2) < 90◦,

∡(x⃗3Ox⃗′
1) = 45◦.
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Here ∡(AOB) denotes the angle specified by three points A, O and B where O =
(0, 0, 0) is the origin.

(i) Calculate all entries of the rotation matrix using the direction cosines Lij =
cos θij where θij is the angle between x⃗i and x⃗′

j. Exploit the condition that
column (and row) vectors of L are mutually orthogonal and normalised as∑

i

LijLik =

{
1 if j = k

0 j ̸= k
,

and the fact that both coordinate systems are right-handed.

(ii) Verify that the orthonormality relationships above are valid for all possible
indices, and that the determinant |L| is equal to +1.

. . . . . . . . .

Problem 6 Thermal conductivity

In a certain crystal the principal thermal conductivities are

K11 = 3Wm−1K−1, K22 = 4Wm−1K−1, K33 = 1Wm−1K−1.

The original axes x⃗1, x⃗2 and x⃗3 are the principal axes and we transform our coordinate
system using the inverse rotation as x⃗′

1 = LT x⃗1, x⃗
′
2 = LT x⃗2, x⃗

′
3 = LT x⃗3. Here L is

the basic rotation matrix around the x⃗2 axis with an angle π/4.

(i) A vector v⃗ has vector entries

v1 = 3, v2 = 4, v3 = 1,

in the old coordinate system. Calculate the vector entries v′i in the new coordi-
nate system. Hint: recall that an inverse rotation of the coordinate system has
the same effect on the vector entries as an active rotation of the vector.

(ii) Calculate the nine components K ′
ij of the thermal conductivity tensor in the

new coordinate system.

(iii) What is the volume enclosed by the representation quadric x⃗TKx⃗ = 1?

(iv) Calculate the sum of the diagonal components (trace of the matrixK) (a) before
the transformation and (b) after the transformation, and show that they are
equal. Are they always identical?

(v) Calculate the sum of squares of all matrix entries as KijKij (a) before the
transformation and (b) after the transformation, and show that they are equal.
Could this quantity be used as a measure of the “magnitude” of a tensor vari-
able? Hint: expressing the sum of squares KijKij as the trace of a product of
two matrices from Problem 1 helps because the trace is the same in all coordi-
nate systems.
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(vi) A thin plate of this crystal is cut perpendicular to the new coordinate axis
x⃗′
3, and a temperature gradient of 1000Km−1 is maintained between its faces.

Calculate the rate of flow of heat (a) perpendicular to its faces, and (b) parallel

to its faces. Note: The heat flow equation is Q⃗ = −K
−→
∇T where Q⃗ is the heat

flow vector, and
−→
∇T is the temperature gradient vector as

−→
∇T =

∂T

∂x1

x⃗1 +
∂T

∂x2

x⃗2 +
∂T

∂x3

x⃗3.

. . . . . . . . .

Problem 7 Stress tensor

Given the rank-2 stress tensor as the following matrix

σ =

 4 0 −3
0 2 0
−3 0 −1


(i) Compute explicitly the cubic polynomial whose roots λi are the three principal

values of the tensor.

(ii) By plotting the value of the cubic expression for several different values of λ,
estimate the three principal values of the tensor.

(iii) Diagonalize σ and compare the principal values to those estimated in part (ii).

(iv) Recall that the stress tensor expresses the linear relation between a unit vector

and a corresponding traction vector T⃗ (force vector per unit area). What is the
direction of the unit vector n⃗ for which we obtain the largest possible traction
vector |T |? Is it always this direction?

(v) The stresses acting on a body have the following components σij in the coordi-
nate system spanned by x⃗1, x⃗2 and x⃗3 as

σ =

σ 0 0
0 −σ 0
0 0 0

 .

We transform our coordinate system to x⃗′
1, x⃗

′
2, and x⃗′

3 by a rotation of 45◦ about
x⃗3 such that x⃗′

1 bisects the angle between x⃗1 and −x⃗2. Calculate the rotation

matrix L that transforms vector entries as V⃗ ′ = LV⃗ . Calculate the entries σ′
ij

of the stress tensor in the new coordinate system. Comment on your results.

. . . . . . . . .
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Problem 8 Thermal expansion

A 1 cm cube of material with principal thermal expansion coefficients

α11 = α22 = 5.1× 10−5K−1, α33 = 1.3× 10−5K−1,

is placed on a flat surface. The axis of crystal symmetry is parallel to the diagonal
of one of the vertical faces of the cube. At what angle to the vertical are each of the
edges of the cube after it is heated by 1000 ◦C? What is its new volume? (hint: don’t
forget to include any rotation of the cube as it stays resting on the flat surface)

. . . . . . . . .

Problem 9 Refractive index

A monoclinic crystal has an electrical susceptibility given by the tensor

χ =

3 0 2
0 5 0
2 0 8

 .

Find the principal values of the refractive index for the material.

. . . . . . . . .
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