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1. Basic principles

Properties and variables

Scalar and vector variables

Tensor properties

Crystal symmetry, Neumann’s principle

Transformation of coordinates, transformation of vectors and tensors

Representation surface, principal axes

2. Second-rank tensors
Thermal and electrical conductivity

Electrical and magnetic susceptibility
Stress and strain

Thermal expansion

Optical properties of crystals
3. Third and fourth-rank tensors

@ Piezoelectricity
@ Elastic stiffness and compliance

@ Elastic properties of cubic and isotropic crystals
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Applications of tensors

Linear response in materials

cause
(external)

effect proportionality
(property of material)
current density conductivity
J = o
el. polaris. el. suscept.
P = €0X
thermal exp. thermal exp. coeff.
€ = @
stress stiffness
o = C

electric field
F

electric field
E

change of temp.
AT

strain
€
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Linear response in materials

effect proportionality cause
(property of material) (external)
current density conductivity electric field
J = o E
el. polaris. el. suscept. electric field
P = €0X E
thermal exp. thermal exp. coeff. change of temp.
€ = Q@ AT
stress stiffness strain
o = C €

o valid only in 1D — we need to go beyond numbers J, P etc.
@ a physical quantity has both magnitude and direction

@ linear relations in vector fields J = o F
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Linear approximation

deviation from linear: too large current — thermal effects, breakdown

a (stress) J (current density)
A
brittle material larger slope— better conductor
strong but not ductile 09 > 0]

ductile material

linear region N
/ 0'2 \ ¢ \
plastic material 4 \\ linear region
o1y |
€ (strain) E (electric field)

@ when cause is ‘small’ then effect is linear via a Taylor series
f@)=f0)+ f'(0)z+...
e slope f/(x) = o is the proportionality: property of the material
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Linear approximation

deviation from linear: too large current — thermal effects, breakdown

a (stress) J (current density)
A
brittle material larger slope— better conductor
strong but not ductile 09 > 0]

ductile material

linear region N
‘/ T —
plastic material 4 \\ linear region
o1y |
€ (strain) E (electric field)

@ when cause is ‘small’ then effect is linear via a Taylor series
f@)=f0)+ f'(0)z+...

e slope f/(x) = o is the proportionality: property of the material

@ in isotropic material ¢ independent of direction of E

@ linear but anistropic material: we need to use tensors
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isotropic material

@ macroscopic properties
independent of direction

e amorphous materials: glass

@ small-grained polycrystalline
materials: averaging

@ some crystals: linear
response in cubic crystals

@ proportional vectors J=cE

]
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isotropic material anisotropic material
@ macroscopic properties @ macroscopic properties
independent of direction depend on direction
e amorphous materials: glass @ liquid crystals

o small-grained polycrystalline e fibre composites: wood,

materials: averaging reinforced concrete
@ some crystals: linear @ single crystals: most crystal
response in cubic crystals lattices

—

@ proportional vectors J=cE e need to write J = tensor - E
SN "

]
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Applications of anisotropy

anisotropy is the key to so many technologies and applications

Piezoelectricity
@ quartz oscillators — clock frequency in computers
@ gas lighters
@ stepper motors and high-precision positioning
@ sensors — microphones
Optical devices
@ polarisers
@ beam splitters
Liquid crystals
o LCD screen, displays
e watch

o etc.
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Thought experiment in anisotropic materials
vector J = (Jz, Jy, J-) not necessarily parallel to E= (Es, Ey, E)

o we apply electric field E to anisotropic material (cause)
@ measure the resulting current density vector J (effect)

o linearity: 2F results in 2J with same direction

8 /42



Motivation Tensors Rotations Visualisation and Crystals Applications of tensors

Thought experiment in anisotropic materials
vector J = (Jz, Jy, J-) not necessarily parallel to E= (Es, Ey, E)

@ we apply electric field E to anisotropic material (cause)
@ measure the resulting current density vector J (effect)

o linearity: 2F results in 2J with same direction
z direction
apply E =E,&

J:c = Uszm
Jy = oy By
Jz = UzzEw
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Thought experiment in anisotropic materials
vector J = (Jz, Jy, J-) not necessarily parallel to E= (Es, Ey, E)

@ we apply electric field E to anisotropic material (cause)
@ measure the resulting current density vector J (effect)

o linearity: 2F results in 2J with same direction

z direction y direction
apply £ = E,% apply E= E,y
Jr = 0z Fy Jr = UzyEy
Jy =0y By Jy = oyy By
J, =00, J, = UzyEy

z
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Thought experiment in anisotropic materials
vector J = (Jz, Jy, J-) not necessarily parallel to E= (Es, Ey, E)

@ we apply electric field E to anisotropic material (cause)
@ measure the resulting current density vector J (effect)

o linearity: 2F results in 2J with same direction

z direction y direction z direction
apply £ = E, T apply E = E,ij apply £ = E.7
J:c - Uszm Jz = UzyEy J:c - U:czEz
Jy = O'yngc Jy = O'nyy Jy = UyzEz
J, =0 F, J, :O'ZyEy J.=0..F,

z z
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Writing linear equations compactly
linearity: if we apply E= (Ey, Ey, E.) we sum z, y, z contributions
Jo = 0pa by + 0ry By + 04, F-,
Jy = oy By +0yy By + 0y E,
J,=00mby +oyEy+0,E,
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Writing linear equations compactly
linearity: if we apply E= (Ey, Ey, E.) we sum z, y, z contributions
Jo = 0pa by + 0ry By + 04, F-,
Jy = oy By +0yy By + 0y E,
J,=00mby +oyEy+0,E,

—

e notation for axes ¥ = ¥y, ¥ = T2 and 2’ = Z3

e and for vector components J, = Ji, J, = Jo and J, = J3

e and we denote the idexes: i, j,k,[--- € {1,2,3}
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Writing linear equations compactly
linearity: if we apply E= (Ey, Ey, E.) we sum z, y, z contributions
Jo = 0pa by + 0ry By + 04, F-,
Jy = oy By +0yy By + 0y E,
J,=00mby +oyEy+0,E,

—

notation for axes ¥ = ¥y, ¥ = T2 and Z = &3

e and for vector components J, = Ji, J, = Jo and J, = J3

e and we denote the idexes: i, j,k,[--- € {1,2,3}

e use compact Einstein convention or matrix/vector prod.

3
Ji =Y 0i;E; = 0i;E;
=1

J1 011 012 013 E,
Jo| = [o21 022 o023 [Eo
J3 031 032 033| |E3
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What is a tensor?

rank-r array of numbers

r=0 scalar: T r=1 vector: V; r =2 matrix: IWU r =3 (3D) array: Aijk

1235 v

A I3

e very useful in so many
applications

@ materials: express linear
properties of materials

e machine learning: tensors are

weights in neural networks Te nSOrFI OW
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Visualisation and Crystals

Applications of tensors

Matrix and vector notation

e for rank r = 1,2 can use compact matrix/vector notations

@ for rank r > 2 need to use tensors and Einstein summation

e Einstein convention: we imply summing over repeated indexes

explicit Einstein conv. matrix notation type
a= 2?21 v;W; a = v;Ww; a=7 -0 vector /vector
a; = E?Zl T; v a; = T;;v; a=T-7 matrix/vector
R, = 25:1 Sii Tk R = ;T R=S-T matrix/matrix

3
Rij =3 5=1 SigiiThl

Ri; = SijraTh
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Matrix and vector notation
e for rank r = 1,2 can use compact matrix/vector notations
@ for rank r > 2 need to use tensors and Einstein summation

e Einstein convention: we imply summing over repeated indexes

explicit Einstein conv. matrix notation type
a= 2?21 v;W; a = v;Ww; a=7 -0 vector /vector
a; = E?Zl T; v a; = T;;v; a=T-7 matrix/vector
R, = 25:1 Sii Tk R = ;T R=S-T matrix/matrix

3
Rij = =1 ST Rij = SijuT

e tensors (as well as matrices/vectors) express linear relations
@ apply electric field twice as large E — 2E then effect J — 2.J

o linearity: if we make o;; — 20;; twice as large, same effect
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Summary of lecture 1

Basic principles

@ cause-effect: linear relations used when cause is small
@ anisotropy: macroscopic properties depend on direction
@ cause vector is not necessarily parallel to effect vector

@ in this case we used tensors to express linear relations

Tensors basics

@ tensors, such as Tj;j, are rank-r arrays of numbers
o with materials we work in 3D and indexes run for i, j,k = 1,2,3
e rank 1 and rank 2: we can use matrices and vectors

o for higher ranks we use Einstein convention: summation over
repeated index is implied
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Coordinate system rotations

@ isotropic materials: rotation does not affect properties

@ anisotropic materials: problems simplify when viewed in specific
coordinate systems — we want to apply rotations
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Coordinate system rotations
@ isotropic materials: rotation does not affect properties

@ anisotropic materials: problems simplify when viewed in specific
coordinate systems — we want to apply rotations

e compactly describe rotations using rotation matrices

-

J =LJ J! = LiJ;

@ computer graphics: rotate vectors whenever we move camera
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Example: matrix of rotation around z axis

Rotate vectors that are parallel with coord. axes: Vixi, Voxs, Vias

:f:’zA
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Example: matrix of rotation around z axis

Rotate vectors that are parallel with coord. axes: Vixi, Voxs, Vias

T
A 1% cos 0
L|0|=V;|sind
0 0

15 /42
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Example: matrix of rotation around z axis

Rotate vectors that are parallel with coord. axes: Vixi, Voxs, Vias

Ty . )
A 1% cos 0
L|0|=V;|sind
L 0] | 0
(0] [—sind
=, L (V| =V5| cosf
V 0 | 0] 0
-y >~z
V 1
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Visualisation and Crystals

Applications of tensors

Example: matrix of rotation around z axis

Rotate vectors that are parallel with coord. axes: Vixi, Voxs, Vias

:f:’zA

co X

Vi

Va

V3

[cos @
sin 0
0
—siné
cos
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Example: matrix of rotation around z axis

Rotate vectors that are parallel with coord. axes: Vixi, Voxs, Vias

T . ]
A 1% cos 0
L|0|=V;|sind
1 0 | | 0
(0] [—sind
=, L (V| =V5| cosf
V 0 | 0] 0
[0] [0
-y >z L|0|=V50
= I 3
\%4 \a 1

@ a general vector is just the sum V= Viaq + Vo + Vaas
o right-hand sides above must be column vectors of L
Vi cosf —sing 0] [V

V| = |sinf cosf® 0| [V
Y 0 0 1| |v
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Applications of tensors

Basic and general rotations

Basic rotation matrices:

1 0 0 cos@ 0 sinf
Ry,= |0 cosf —sinf|, Ry= 0 1 0
0 sinf cos@ —sinf 0 cos6

7RZ:

cosf
sin 6
0

—sinf 0
cosf 0
0 1
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Basic and general rotations

Basic rotation matrices:

1 0 0 cos@ 0 sinf cosf —sinf O
Ry= 1|0 cosf —sinf|, Ry= 0 1 0 [, R,=|sinf cosf O
0 sinf cos@ —sinf 0 cos6 0 0 1

But how about an off-axis rotation? General rot. matrix L

Ly Lip Lag
L= |Ley Loy Los|, L must be orthogonal and detL =1
L3 L3z Lss
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Basic and general rotations

Basic rotation matrices:

1 0 0 cos@ 0 sinf cosf —sinf O
Ry= 1|0 cosf —sinf|, Ry= 0 1 0 [, R,=|sinf cosf O
0 sinf cos@ —sinf 0 cos6 0 0 1

But how about an off-axis rotation? General rot. matrix L

Ly Lip Lag
L= |Ley Loy Los|, L must be orthogonal and detL =1
L3 L3z Lss

We can use L to rotate all axes &, = L#; (see colour in prev. slide)

Ly Lo L3
1 1 1
Ty = Lgl 5 Ty = L22 5 Ty = L23
L31 L32 de

o L;; = cosf;; are scalar products between orig. and new axes

e example: 6, is angle between original #; and new &
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Orthogonal matrices

e But new coordinate axes & must be orthogonal and normalised

e example: L;1L;; =& - & =1 while Lj1 Lo =7} - 75 =0
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Orthogonal matrices
e But new coordinate axes & must be orthogonal and normalised
e example: L;1L;; =& - & =1 while Lj1 Lo =7} - 75 =0

@ in L column and row vectors are mutually orthogonal

L'L=1 LijLix = 01,

o Kronecker delta ¢;; = 1 when ¢ = j and d;; = 0 otherwise

@ guarantees transpose is inverse operation LT.J" = J
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Orthogonal matrices
e But new coordinate axes & must be orthogonal and normalised
e example: Lj1Ljy =2 -7 =1 while Lj1 Lo =7, -7, =0

@ in L column and row vectors are mutually orthogonal

L'L=1 LijLix = 01,

o Kronecker delta ¢;; = 1 when ¢ = j and d;; = 0 otherwise

@ guarantees transpose is inverse operation LT.J" = J

reminder: diagonalising matrices via eigenvectors

M 0 0
M=L|0 X 0]|LT
0 0 M3

o diagonalise real, symmetric matrix M with real eigenvalues \;

@ here L contains eigenvectors of M as columns — orthogonal
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Active and Passive rotations

@ so far, actively rotated vector to a new one J =LJ
@ physical variable J should not change, just frame of ref

@ passive: vector J remains unchanged, entries wrt new coord syst

Passive rotation Active rotation

18 /42
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Active and Passive rotations

@ so far, actively rotated vector to a new one J =LJ
@ physical variable J should not change, just frame of ref
@ passive: vector J remains unchanged, entries wrt new coord syst

Active rotation

Passive rotation

active rotation V' = LV equivalent to: passive rotation with
inversely rotated coord syst 7, = LT7;

V' Z %4 V.7
V- — = Va4
1{-352 = VQI = |V
V' i |2 V. z

active rotation passive rotation 18/ 42
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Rotating tensors

one coordinate system E and J, in other one E/ = LE and J' = LJ
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Rotating tensors

one coordinate system E and J, in other one E/ = LE and J' = LJ

J=0oF substitute /= LT J" and E = LTE’
LTj’ = GLTE/ multiply with L from left
LLTJ_7 = LU/LTE/ simplify LLT =1
j’ =LoL'E’ denote o/ = Lo LT

J =o'E'
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Rotating tensors

one coordinate system E and J, in other one E/ = LE and J' = LJ

J=0oF substitute /= LT J" and E = LTE’
LTj’ = GLTE/ multiply with L from left
LLTJ_7 = LU/LTE/ simplify LLT =1
j’ =LoL'E’ denote o/ = Lo LT

J =o'E'

Tensor entries transform due to rotation

0'/ = LO’LT Jgj = LikUlejl
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Rotating tensors

one coordinate system E and J, in other one E/ = LE and J' = LJ

J=0oF substitute /= LT J" and E = LTE’
LTj’ = GLTE/ multiply with L from left
LLTJ_7 = LU/LTE/ simplify LLT =1
j’ =LoL'E’ denote o/ = Lo LT

J =o'E'

Tensor entries transform due to rotation

0'/ = LO’LT Jgj = LikUlejl

remark: formal definition of a rank-r Cartesian tensor

e a rank-r array of real numbers T;,;,.. ;. as before
J 3 ! — . . . . ... . . . . .
e transforms according to T} ;, ; = Li,j Liyj, - Li,j, Tjyjy..j,

e when vectors transform according to V; = L;;V;
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Principal axis system

@ given a symmetric rank-2 tensor o;; = 0j; as the matrix o

@ much simpler to work with tensor in the principal axis system

—pas

e column vectors of L are the eigenvectors £”“ as principal axes

20 /42
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Principal axis system

given a symmetric rank-2 tensor o;; = 0;; as the matrix o

much simpler to work with tensor in the principal axis system

column vectors of L are the eigenvectors " as principal axes

("]
a0 0
o=L| 0 oy o0 |L”
0 0 ob*

: pas o . e .
eigenvalues o; = are principal components , here conductivities

parallel cause and effect in principal directions: eigenvalue eq.
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Principal axis system

@ given a symmetric rank-2 tensor o;; = 0j; as the matrix o

much simpler to work with tensor in the principal axis system

—pas

e column vectors of L are the eigenvectors £”“ as principal axes

a0 0
o=L| 0 oy o0 |L”
0 0 ob*

pa
4

eigenvalues 0?%® are principal components , here conductivities

parallel cause and effect in principal directions: eigenvalue eq.

J=0F substitute £ = ZP**
7

_’_ —pas . —pas __ _pas —=pas

J=0 i eigenvalue eq. oF; =~ =o0; ;

J = Ufas _’lpas substitute back P = E

J = UfasE proportionality is a scalar afas

20 /42
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Summary of lecture 2

Rotations

@ simplify description of anisotropic materials
e rotated axis vectors &, = L¥; are column vectors of L
@ active Lv equivalent to inverse passive rot of coord syst

o L transforms tensors into new coord syst as LTL”

Principal axis system

e can always find a rotation that diagonalises a (symmetric) tensor
@ eigenvectors of matrix are the principal axes
@ eigenvalues of the matrix are the principal tensor components

o cause and effect are parallel in the principal directions
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Visualisation and crystal symmetries
@ rotations are crucial for treating anisotropy
@ rotation matrices are very useful for computations
@ but tensors rather abstract objects — visualisation

@ we now introduce intuitive visualisations of tensors

SR
oS X A

TSR EVAA

@ single crystals have high symmetry

@ this manifests in tensor properties
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Reminder: surfaces via implicit equations

2D circle 2D ellipse
?24+y?=1 2?/a® +y? /b =1
1.0 1.0
0.5 0.5
0.0 0.0
-0.5 -0.5
-1.0 -1.0
-1.0 -05 0.0 0.5 1.0 -1.0 -05 0.0 0.5 1.0
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Tensors

Rotations

Visualisation and Crystals

Applications of tensors

Reminder: surfaces via implicit equations

0.5

0.0

2D circle
IL‘2 + y2 =1

2D ellipse
2?/a® +y? /b =1

1.0

0.5

0.0

-1.0 -05 0.0 05 1.0

3D ellipsoid
22/a® +y?/b? + 22 /c? =1
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Visualising tensors as surfaces

all # = (z,y,2)T that produce a parallel component 7 - = 1

al . ZT'TZ=7- (TZ) =1 for fixed T

v

points & implicitly define a surface in 3D, representative of T

25 /42
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Visualising tensors as surfaces

all # = (z,y,2)T that produce a parallel component 7 - = 1

al . ZT'TZ=7- (TZ) =1 for fixed T

v

points & implicitly define a surface in 3D, representative of T

Example: apply electrlc ﬁeld E=7%
e then vector 7 = o E = J is current density

@ scalar product ¥ - v = E-Jis magnitude of parallel component
Anisotropic Isotropic

same in all directions

25 /42
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Examples of surfaces

isotropic material: T is scalar

8y

e simplifies 1 =& - (T%) =T% -

o where 77 = 22 + y? + 22

e surface: 1/T = 2% + y? + 22

o sphere of radius /1/T

26 /42
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Examples of surfaces

isotropic material: T is scalar

8

e simplifies 1 =& - (T%) =T% -
o where 77 = 22 + y? + 22

e surface: 1/T = 2% + y? + 22

o sphere of radius /1/T

o T = diag(\1, A2, A3)
e then v = TZ = (A7, \ay, A\32)T
o ellipsoid: 1 = A12? + Xoy? + 322

o a=A"2b=x"% c=)1"

1.0 26 /42
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Representation quadrics
o T is symmetric — eigenvalues A1, A2, A3 are real
o ellipsoid if and only if A1, A2, A3 > 0 are positive

o generalisation of ellipsoid: quadric surfaces in PAS as

1= z? + Moy? + A32?

27 /42
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Representation quadrics
o T is symmetric — eigenvalues A1, A2, A3 are real
o ellipsoid if and only if A1, Az, A3 > 0 are positive

@ generalisation of ellipsoid: quadric surfaces in PAS as

| 1= M2 + day? + 322 |

cylinder hyperboloid
one component zero one component negative

(>\13>\2»)‘§) = (17 150) ()\1,)\2,)\3) = (1, 1, —].)

V
! /N
“-“‘—‘«‘&Av‘

27 /42
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Rotational properties

start with: representation quadric of the tensor T

1= fTTf substitute diagonal T = LDLT
1= (LTf)TD(LTf) substitute new repr. coords. LTZ = &’
1= (f/)TDf/ this is: representation quadric of diagonal D

any symm. tensor T: take T in PAS and rotate with eigenvectors

28 /42
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Rotational properties

start with: representation quadric of the tensor T

1=2TTz substitute diagonal T = LDLT
1= (LTf)TD(LTf) substitute new repr. coords. LT# = &

1= (f’)TDf/ this is: representation quadric of diagonal D

any symm. tensor T: take T in PAS and rotate with eigenvectors

1 0 0 1 0 0
T=L|0 1 o|LT D=(0 1 0
0 0 0 0 0 0

System

rotating D with 45° around 7

28 /42
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Neumann’s principle: Any physical property of a crystal must
include the symmetry elements of the point group of the crystal
e symmetry may be higher, i.e., more invariants, but must include
at least those symmetry elements

o symmetry of a rank-2 tensor depends only on crystal system, but
not on particular point groups

@ representation surface of a tensor also inherits these symmetry
components

o crystal symmetry axes determine principal directions, i.e., the
principal axis system

AN wicn Lbon
v‘“ b (a;lz:r;wicc) :# B# i ¢‘:,

- “ trigonal a=b#c
monoclinic a#b#c#a ME b hexagonal a=f0=90°
a=v=90° a7 v =120°

c
"‘ orthorhombic a#b#c#a rhombohedral a=b=c
wﬂ b a=f=y=90° ° a=f=7#9%0°
Pt I Ve B

a o
tetragonal a=b#c Aq’ cubic a=b=c
a=f=y=90° m a=8=y=90°
E P b° 7
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Applications of tensors

Effect of crystal structure

cryst. syst. quadric orientation params. tensor
T 0 O
cubic sphere 1 0 T 0
0o o0 T
tetragonal, T 0 0
hexagonal, symm. around &' 2 [0 5 0 }
trigonal 0 0 T3
[N sl 0 0
. 1, Ta, T
orthorhombic Lo 2 3 3 0 T» 0
parallel to diads 0 0 Ty
. . — . Tll 0 T13
monoclinic T parallel to diad 4 0 Tee O
Tws 0 Ts3
o T T Tis
triclinic - 6 Tiz Tea Tos
Ti3 Thz Tisg

@ monoclinic: 3 eigenvalues + 1 angle
@ triclinic: 3 eigenvalues + 3 angles

o others: crystal axes define tensor PAS
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Radius normal property
T

o recall the representation quadric surface 1 = 7' @

e in PAS it is 1 = o122 + o9y? + 0322 with conductivities o1, 09, 03

e the tangent plane vector is (%) = (2012, 202y, 2032) T

T

e we compute as t = ?F(w,y, z) where 0 = F(z,y,2) =3 0% — 1

—

statement: J = o' E is parallel with #(E)

J = (01E1,00E,03F3)T  H{(E) = 2(01E1,09F2,03E3)"
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Summary of lecture 3

Visualisation of tensors

@ applicable to symmetric rank-2 tensors

o surface: collection of points that satisfy quadric equation

o depending on eigenvalues of tensor we get different quadrics
@ quadric surfaces: sphere, ellipsoid, hyperboloid, cylinder etc.

@ quadrics transform naturally when transforming tensors

Effect of crystal structure

@ Neumann’s principle: physical properties of crystals must include
cryst. symmetries

@ therefore tensors include crystal symmetries via eigenvalues and
eigenvectors

@ these symmetries are also included by representation quadrics
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replay =

NOTICE OF LECTURE RECORDING

* This session is being recorded and will be available for students to view on-demand. The recording will be
stored in the Panopto cloud and will be accessible using your SSO via Canvas/WebLearn (delete as
appropriate). Access to this recording is restricted to students in this year group and registered on this
course.

* Please be aware that all screen activity, including any active webcams/mics that are visible and/or audible,
may be recorded.

For more information about lecture recording at the University, please consult the University’s Lecture
Recording Policy.

If you have any questions or concerns, please email replay@it.ox.ac.uk
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Applications of tensors

@ now equipped with mathematical tools
o illustrated concepts on linear response in anisotropic materials
@ there tensors expressed properties of materials
@ example J=0oF
some more advanced applications of tensors
@ mechanical stress and strain: tensor no longer property
@ thermal expansion: cause is scalar

o stiffness via Hooke’s law: tensor no longer rank 2

rotate 45 deg. T
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Stress tensor

o take any infinitesimally small cube of material
e traction vector 7' is force per unit area

@ that acts on the plane represented by area vector 7

—

T=o0on Ti:Uij’nj

@ above guarantees rotational property ¢’ = LoL” via Slide 19

stress tensor is not a property of material: rather a variable

—

equilibrium: tensile stresses equal but opposite o(—77) = =T
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Stress tensor

o take any infinitesimally small cube of material
e traction vector 7' is force per unit area

@ that acts on the plane represented by area vector 7

—

T=o0on Ti:Uij’nj

@ above guarantees rotational property ¢’ = LoL” via Slide 19

stress tensor is not a property of material: rather a variable

—

@ equilibrium: tensile stresses equal but opposite o(—7) = =T

- row vector convention

@ often row vectors as T7 = il o,0u

@ need to use transpose G oy = oL

@ need to use inverse rotation LT for row
vectors

@ possible confusion: L7 is inverse
rotation in our convention 35 /42
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Equilibrium: conservation of angular momentum

@ decompose any matrix into symm. and antisymm. o = o° 4+ o®

o we can define 26° = o + o7 and 20 = o — o7

@ Cauchy: conservation of ang. mom. o = o° is symmetric

011 012 013
021 022 023 =
031 032 033
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Equilibrium: conservation of angular momentum
@ decompose any matrix into symm. and antisymm. o = o° 4+ o®
e we can define 20° = o + o7 and 20% =0 — o7

@ Cauchy: conservation of ang. mom. o = o° is symmetric

011 012 013 o11 0 0

021 022 023| = 0 022 0

031 032 033 0 0 o33
tensile

positive: tensile
negative: compressive
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Motivation Tensors Rotations

Equilibrium: conservation of angular momentum

@ decompose any matrix into symm. and antisymm. o = o° 4+ o®
T

e we can define 20° = o + 07 and 20° =0 — o

@ Cauchy: conservation of ang. mom. o = o° is symmetric

011 012 013 o11 0 0 0 oy Of3

o1 022 o23| = | 0 o2 0| +|of, 0 o3

031 J32 J33 0 0 033 O’f3 0’53 0
tensile shear

positive: tensile shear stress

negative: compressive CONServes ang. mom.
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Motivation Tensors Rotations

Equilibrium: conservation of angular momentum

@ decompose any matrix into symm. and antisymm. o = o° 4+ o®
T

e we can define 20° = o + 07 and 20° =0 — o

@ Cauchy: conservation of ang. mom. o = o° is symmetric

011 012 013 o11 0 0 0 oy Of3 0 ofy ofs
o21 022 o23| = | 0 o022 O | + |ofy 0 o355 +|[—0fy 0 045
031 032 033 0 0 033 Ol O34 0 —0ofy —05s 0
tensile shear rotation
shear stress rotation of the cube

positive: tensile
negative: compressive CONServes ang. mom.

zero in equilibrium
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Principal stresses

@ in equilibrium we can diagonalise o = o

T

@ but o is not property of material: eigenvectors not necessarily
related to crystal axes

stress type

principal comps.

example tensor

triaxial

biaxial

uniaxial
hydrostatic

pure shear

3 non-zero oy
2 non-zero oy
1 non-zero oy,
3 identical o < 0

special biaxial

- diag(oy, 09, 03)
force on thin plate diag(o1,09,0)
pulling wire diag(o1,0,0)
pressure p in fluid  diag(—p, —p, —p)

rod torsion diag(—o,0,0)
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Principal stresses

@ in equilibrium we can diagonalise o = o™

@ but o is not property of material: eigenvectors not necessarily
related to crystal axes

stress type  principal comps. example tensor
triaxial 3 non-zero oy, - diag(oy, 09, 03)
biaxial 2 non-zero oy, force on thin plate diag(o1,09,0)
uniaxial 1 non-zero oy, pulling wire diag(o1,0,0)

hydrostatic 3 identical o, <0 pressure p in fluid  diag(—p, —p, —p)

pure shear special biaxial rod torsion diag(—o,0,0)

remark: how ‘big’ is the stress? no obvious metric as with vectors
matrix invariants: Tr(A), determinant and matrix norms as Tr(A” A)
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Strain in 1D

length of small element Az increases due to stretching as Az + Au

A u(z)
0 Ax T
: — -~
0
- — -
o Az + Au T+u
u(0) >
u(0) 0
. increase in length . Auv  du
strain = — = llim — = —
original length Az—0 Az dz

e small element (x,x + Ax) is increased to (z + u, z + Az + u+ Au)
@ strain e is the derivative of displacement u(z) wrt. position
@ homogeneous: derivative constant, global property

o Taylor expansion in homogeneous case: u(z) — u(0) = ex
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Strain in 3D

@ need to use vectors @ = (uy,us,u3)? and T = (2,22, x3)7
@ tensor: partial derivatives of displacement field wrt position
~ (9’UJZ

€5 =
ox;
J

e as before, antisymmetric part (€;; — €;;)/2 is rotation

39 /42
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Strain in 3D

@ need to use vectors @ = (uy,us,u3)? and T = (2,22, x3)7
@ tensor: partial derivatives of displacement field wrt position
~ (9’&1

€5 =
ox;
J

e as before, antisymmetric part (€;; — €;;)/2 is rotation

@ strain is a symmetric, rank-2 tensor

o 3ui au]' 9
iy = (5o + 210))
8mj al'z
ST 0 0 €2 €13
e=10 €29 0|+ |e12 0 €23
0 0 €33 €13 €3 0
uniaxial extension shear

e diagonals €11, €22, €33 are uniaxial extensions per unit length
o off-diagonals are shear strains — coordinate syst. dependent

e homogeneous case: 4(Z) — @(0) = €¥
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Pure shear stress and strain
assume the pure shear stress and strain tensors
0 o O 0 € O
e=|e 0 O
0 0 0

o=|c 0 0
0 0 O

@ both can be diagonalised by a 45° rotation of the coord. syst

o two eigenvalues +o and +e
o for strain € = €15 = (gg; g;f )/2 = tan(f) =~ 0
shear strain
_______ '
- ]
.

shear stress

rotate 45 deg.
—
7
1 |
'_-——-’{Y"'—
8 =&
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Strain tensor via thermal expansion
e material is heated up uniformly by AT
@ strain tensor is proportional to this temperature

@ proportionality: symmetric thermal expansion coefficients a;
e = alAT €ij = a”AT
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Strain tensor via thermal expansion
e material is heated up uniformly by AT
@ strain tensor is proportional to this temperature

@ proportionality: symmetric thermal expansion coefficients a;
e = alAT €ij = a”AT

@ eigenvalues and eigenvectors contain crystal symmetries
@ principal components €; = a; AT, e.g., along crystal axes
@ «; are typically positive, but can be negative

@ volume expansion is AV & (a1 + ag + a3)VAT an invariant

r(1+ a1 AT)

AT

41 /42



Motivation Tensors Rotations Visualisation and Crystals Applications of tensors

Hooke’s law and linear elasticity

in case of a 1D spring we have Hooke’s law

F=kx

@ can relate stress and strain in an elastic material

@ linear mapping via rank-4 stiffness tensor c¢;;z;

045 = Cijkl €kl
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Hooke’s law and linear elasticity

in case of a 1D spring we have Hooke’s law

F=kx

@ can relate stress and strain in an elastic material

@ linear mapping via rank-4 stiffness tensor c¢;;z;

045 = Cijkl €kl
e c;;ji; may generally have 3% = 81 entries, but reduces to 21
e example: 0;; = 0j;, therefore ;i = ¢jim
o example: €y = €, therefore cijp = cijik
@ in crystals this further reduces due to sytmmetries in eg;

e orthorhombic crystals: 9 entries, hexagonal crystals: 5, cubic: 3
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