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Motivation Tensors Rotations Visualisation and Crystals Applications of tensors

• This session is being recorded and will be available for students to view on-demand. The recording will be 
stored in the Panopto cloud and will be accessible using your SSO via Canvas/WebLearn (delete as 
appropriate). Access to this recording is restricted to students in this year group and registered on this 
course.

• Please be aware that all screen activity, including any active webcams/mics that are visible and/or audible, 
may be recorded.

For more information about lecture recording at the University, please consult the University’s Lecture 
Recording Policy.

If you have any questions or concerns, please email replay@it.ox.ac.uk
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1. Basic principles

Properties and variables

Scalar and vector variables

Tensor properties

Crystal symmetry, Neumann’s principle

Transformation of coordinates, transformation of vectors and tensors

Representation surface, principal axes

2. Second-rank tensors

Thermal and electrical conductivity

Electrical and magnetic susceptibility

Stress and strain

Thermal expansion

Optical properties of crystals

3. Third and fourth-rank tensors

Piezoelectricity

Elastic stiffness and compliance

Elastic properties of cubic and isotropic crystals
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Linear response in materials

effect proportionality cause
(property of material) (external)

current density conductivity electric field
J = σ E

el. polaris. el. suscept. electric field
P = ϵ0χ E

thermal exp. thermal exp. coeff. change of temp.
ϵ = α ∆T

stress stiffness strain
σ = C ϵ

valid only in 1D – we need to go beyond numbers J , P etc.

a physical quantity has both magnitude and direction

linear relations in vector fields J⃗ = σE⃗
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Linear approximation
deviation from linear: too large current → thermal effects, breakdown

when cause is ‘small’ then effect is linear via a Taylor series
f(x) = f(0) + f ′(0)x+ . . .

slope f ′(x) = σ is the proportionality: property of the material

in isotropic material σ independent of direction of E⃗

linear but anistropic material: we need to use tensors
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isotropic material

macroscopic properties
independent of direction

amorphous materials: glass

small-grained polycrystalline
materials: averaging

some crystals: linear
response in cubic crystals

proportional vectors J⃗ = σE⃗

anisotropic material

macroscopic properties
depend on direction

liquid crystals

fibre composites: wood,
reinforced concrete

single crystals: most crystal
lattices

need to write J⃗ = tensor · E⃗
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Applications of anisotropy

anisotropy is the key to so many technologies and applications

Piezoelectricity

quartz oscillators – clock frequency in computers

gas lighters

stepper motors and high-precision positioning

sensors – microphones

Optical devices

polarisers

beam splitters

Liquid crystals

LCD screen, displays

watch

etc.
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Thought experiment in anisotropic materials
vector J⃗ = (Jx, Jy, Jz) not necessarily parallel to E⃗ = (Ex, Ey, Ez)

we apply electric field E⃗ to anisotropic material (cause)

measure the resulting current density vector J⃗ (effect)

linearity: 2E⃗ results in 2J⃗ with same direction

x direction

apply E⃗ = Exx⃗

Jx = σxxEx

Jy = σyxEx

Jz = σzxEx

y direction

apply E⃗ = Ey y⃗

Jx = σxyEy

Jy = σyyEy

Jz = σzyEy

z direction

apply E⃗ = Ez z⃗

Jx = σxzEz

Jy = σyzEz

Jz = σzzEz
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Writing linear equations compactly
linearity: if we apply E⃗ = (Ex, Ey, Ez) we sum x, y, z contributions

Jx = σxxEx + σxyEy + σxzEz,

Jy = σyxEx + σyyEy + σyzEz

Jz = σzxEx + σzyEy + σzzEz

notation for axes x⃗ = x⃗1, y⃗ = x⃗2 and z⃗ = x⃗3

and for vector components Jx = J1, Jy = J2 and Jz = J3

and we denote the idexes: i, j, k, l · · · ∈ {1, 2, 3}

use compact Einstein convention or matrix/vector prod.

Ji =

3∑
j=1

σijEj ≡ σijEjJ1J2
J3

 =

σ11 σ12 σ13

σ21 σ22 σ23

σ31 σ32 σ33

E1

E2

E3


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What is a tensor?

rank-r array of numbers

very useful in so many
applications

materials: express linear
properties of materials

machine learning: tensors are
weights in neural networks
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Matrix and vector notation
for rank r = 1, 2 can use compact matrix/vector notations

for rank r ≥ 2 need to use tensors and Einstein summation

Einstein convention: we imply summing over repeated indexes

explicit Einstein conv. matrix notation type

a =
∑3

i=1 viwi a = viwi a = v⃗ · w⃗ vector/vector

ai =
∑3

j=1 Tijvj ai = Tijvj a⃗ = T · v⃗ matrix/vector

Rik =
∑3

j=1 SijTjk Rik = SijTjk R = S ·T matrix/matrix

Rij =
∑3

k,l=1 SijklTkl Rij = SijklTkl

tensors (as well as matrices/vectors) express linear relations

apply electric field twice as large E⃗ → 2E⃗ then effect J⃗ → 2J⃗

linearity: if we make σij → 2σij twice as large, same effect
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Summary of lecture 1

Basic principles

cause-effect: linear relations used when cause is small

anisotropy: macroscopic properties depend on direction

cause vector is not necessarily parallel to effect vector

in this case we used tensors to express linear relations

Tensors basics

tensors, such as Tijk, are rank-r arrays of numbers

with materials we work in 3D and indexes run for i, j, k = 1, 2, 3

rank 1 and rank 2: we can use matrices and vectors

for higher ranks we use Einstein convention: summation over
repeated index is implied
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• This session is being recorded and will be available for students to view on-demand. The recording will be 
stored in the Panopto cloud and will be accessible using your SSO via Canvas/WebLearn (delete as 
appropriate). Access to this recording is restricted to students in this year group and registered on this 
course.

• Please be aware that all screen activity, including any active webcams/mics that are visible and/or audible, 
may be recorded.

For more information about lecture recording at the University, please consult the University’s Lecture 
Recording Policy.

If you have any questions or concerns, please email replay@it.ox.ac.uk
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Coordinate system rotations

isotropic materials: rotation does not affect properties

anisotropic materials: problems simplify when viewed in specific
coordinate systems – we want to apply rotations

compactly describe rotations using rotation matrices

J⃗ ′ = LJ⃗ J ′
i = LijJj

computer graphics: rotate vectors whenever we move camera
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Example: matrix of rotation around z axis

Rotate vectors that are parallel with coord. axes: V1x⃗1, V2x⃗2, V3x⃗3

L

V1

0
0

 = V1

cos θsin θ
0


L

 0
V2

0

 = V2

− sin θ
cos θ
0


L

 0
0
V3

 = V3

00
1


a general vector is just the sum V⃗ = V1x⃗1 + V2x⃗2 + V3x⃗3

right-hand sides above must be column vectors of LV ′
1

V ′
2

V ′
3

 =

cos θ − sin θ 0
sin θ cos θ 0
0 0 1

V1

V2

V2


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Basic and general rotations
Basic rotation matrices:

Rx=

1 0 0
0 cos θ − sin θ
0 sin θ cos θ

 , Ry=

 cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ

 , Rz=

cos θ − sin θ 0
sin θ cos θ 0
0 0 1

 .

But how about an off-axis rotation? General rot. matrix L

L =

L11 L12 L13

L21 L22 L23

L31 L32 L33

 , L must be orthogonal and detL = 1

We can use L to rotate all axes x⃗′
i = Lx⃗i (see colour in prev. slide)

x⃗′
1 =

L11

L21

L31

, x⃗′
2 =

L12

L22

L32

, x⃗′
3 =

L13

L23

L33


Lij = cos θij are scalar products between orig. and new axes

example: θ12 is angle between original x⃗1 and new x⃗′
2
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Orthogonal matrices

But new coordinate axes x⃗′
i must be orthogonal and normalised

example: Li1Li1 = x⃗′
1 · x⃗′

1 = 1 while Li1Li2 = x⃗′
1 · x⃗′

2 = 0

in L column and row vectors are mutually orthogonal

LTL = 1 LijLik = δjk

Kronecker delta δij = 1 when i = j and δij = 0 otherwise

guarantees transpose is inverse operation LTJ ′ = J

reminder: diagonalising matrices via eigenvectors

M = L

λ1 0 0
0 λ2 0
0 0 λ3

LT

diagonalise real, symmetric matrix M with real eigenvalues λi

here L contains eigenvectors of M as columns – orthogonal
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Active and Passive rotations

so far, actively rotated vector to a new one J⃗ ′ = LJ⃗

physical variable J⃗ should not change, just frame of ref

passive: vector J⃗ remains unchanged, entries wrt new coord syst

active rotation V⃗ ′ = LV⃗ equivalent to: passive rotation with
inversely rotated coord syst x⃗′

i = LT x⃗iV⃗ ′ · x⃗1

V⃗ ′ · x⃗2

V⃗ ′ · x⃗3


active rotation

=

V ′
1

V ′
2

V ′
2

 =

V⃗ · x⃗′
1

V⃗ · x⃗′
2

V⃗ · x⃗′
3


passive rotation

18 / 42



Motivation Tensors Rotations Visualisation and Crystals Applications of tensors

Active and Passive rotations

so far, actively rotated vector to a new one J⃗ ′ = LJ⃗

physical variable J⃗ should not change, just frame of ref

passive: vector J⃗ remains unchanged, entries wrt new coord syst

active rotation V⃗ ′ = LV⃗ equivalent to: passive rotation with
inversely rotated coord syst x⃗′

i = LT x⃗iV⃗ ′ · x⃗1

V⃗ ′ · x⃗2

V⃗ ′ · x⃗3


active rotation

=

V ′
1

V ′
2

V ′
2

 =

V⃗ · x⃗′
1

V⃗ · x⃗′
2

V⃗ · x⃗′
3


passive rotation

18 / 42



Motivation Tensors Rotations Visualisation and Crystals Applications of tensors

Rotating tensors
one coordinate system E⃗ and J⃗ , in other one E⃗′ = LE⃗ and J⃗ ′ = LJ⃗

J⃗ = σE⃗ substitute J⃗ = LT J⃗ ′ and E⃗ = LT E⃗′

LT J⃗ ′ = σLT E⃗′
multiply with L from left

LLT J⃗ ′ = Lσ′LT E⃗′
simplify LLT = 1

J⃗ ′ = LσLT E⃗′
denote σ′ = LσLT

J⃗ ′ = σ′E⃗′

Tensor entries transform due to rotation

σ′ = LσLT σ′
ij = LikσklLjl

remark: formal definition of a rank-r Cartesian tensor

a rank-r array of real numbers Ti1i2...ir as before

transforms according to T ′
i1i2...ir

= Li1j1Li2j2 · · ·Lirjr Tj1j2...jr

when vectors transform according to V ′
i = LijVj
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Principal axis system

given a symmetric rank-2 tensor σij = σji as the matrix σ

much simpler to work with tensor in the principal axis system

column vectors of L are the eigenvectors x⃗ pas
i as principal axes

σ = L

σpas
1 0 0
0 σpas

2 0
0 0 σpas

3

LT

eigenvalues σpas
i are principal components , here conductivities

parallel cause and effect in principal directions: eigenvalue eq.

J⃗ = σE⃗ substitute E⃗ = x⃗ pas
i

J⃗ = σx⃗ pas
i eigenvalue eq. σx⃗ pas

i = σpas
i x⃗ pas

i

J⃗ = σpas
i x⃗ pas

i substitute back x⃗ pas
i = E⃗

J⃗ = σpas
i E⃗ proportionality is a scalar σpas

i
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Summary of lecture 2

Rotations

simplify description of anisotropic materials

rotated axis vectors x⃗′
i = Lx⃗i are column vectors of L

active Lv⃗ equivalent to inverse passive rot of coord syst

L transforms tensors into new coord syst as LTLT

Principal axis system

can always find a rotation that diagonalises a (symmetric) tensor

eigenvectors of matrix are the principal axes

eigenvalues of the matrix are the principal tensor components

cause and effect are parallel in the principal directions
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• This session is being recorded and will be available for students to view on-demand. The recording will be 
stored in the Panopto cloud and will be accessible using your SSO via Canvas/WebLearn (delete as 
appropriate). Access to this recording is restricted to students in this year group and registered on this 
course.

• Please be aware that all screen activity, including any active webcams/mics that are visible and/or audible, 
may be recorded.

For more information about lecture recording at the University, please consult the University’s Lecture 
Recording Policy.

If you have any questions or concerns, please email replay@it.ox.ac.uk
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Visualisation and crystal symmetries

rotations are crucial for treating anisotropy

rotation matrices are very useful for computations

but tensors rather abstract objects → visualisation

we now introduce intuitive visualisations of tensors

single crystals have high symmetry

this manifests in tensor properties
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Reminder: surfaces via implicit equations
2D circle

x2 + y2 = 1

-1.0 -0.5 0.0 0.5 1.0
-1.0

-0.5

0.0

0.5

1.0

2D ellipse
x2/a2 + y2/b2 = 1

-1.0 -0.5 0.0 0.5 1.0
-1.0

-0.5

0.0

0.5

1.0

3D sphere
x2 + y2 + z2 = 1

3D ellipsoid
x2/a2 + y2/b2 + z2/c2 = 1
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Visualising tensors as surfaces
all x⃗ = (x, y, z)T that produce a parallel component x⃗ · v⃗ = 1

all x⃗: x⃗TTx⃗ = x⃗ · (Tx⃗)︸ ︷︷ ︸
v⃗

= 1 for fixed T

points x⃗ implicitly define a surface in 3D, representative of T

Example: apply electric field E⃗ = x⃗

then vector v⃗ = σE⃗ = J⃗ is current density

scalar product x⃗ · v⃗ = E⃗ · J⃗ is magnitude of parallel component
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Examples of surfaces
isotropic material: T is scalar

simplifies 1 = x⃗ · (Tx⃗) = T x⃗ · x⃗

where x⃗ · x⃗ = x2 + y2 + z2

surface: 1/T = x2 + y2 + z2

sphere of radius
√
1/T

Principal Axis System and positive eigenvalues

T = diag(λ1, λ2, λ3)

then v⃗ = Tx⃗ = (λ1x, λ2y, λ3z)
T

ellipsoid: 1 = λ1x
2 + λ2y

2 + λ3z
2

a = λ
−1/2
1 , b = λ

−1/2
2 , c = λ

−1/2
3
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Representation quadrics
T is symmetric → eigenvalues λ1, λ2, λ3 are real

ellipsoid if and only if λ1, λ2, λ3 > 0 are positive

generalisation of ellipsoid: quadric surfaces in PAS as

1 = λ1x
2 + λ2y

2 + λ3z
2

cylinder
one component zero
(λ1, λ2, λ3) = (1, 1, 0)

hyperboloid
one component negative
(λ1, λ2, λ3) = (1, 1,−1)
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Rotational properties
start with: representation quadric of the tensor T

1 = x⃗TTx⃗ substitute diagonal T = LDLT

1 = (LT x⃗)TD(LT x⃗) substitute new repr. coords. LT x⃗ = x⃗′

1 = (x⃗′)TDx⃗′
this is: representation quadric of diagonal D

any symm. tensor T: take T in PAS and rotate with eigenvectors

T = L

1 0 0
0 1 0
0 0 0

LT

rotating D with 45◦ around x⃗1

D =

1 0 0
0 1 0
0 0 0


in Principal Axis System
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Neumann’s principle: Any physical property of a crystal must
include the symmetry elements of the point group of the crystal

symmetry may be higher, i.e., more invariants, but must include
at least those symmetry elements

symmetry of a rank-2 tensor depends only on crystal system, but
not on particular point groups

representation surface of a tensor also inherits these symmetry
components

crystal symmetry axes determine principal directions, i.e., the
principal axis system
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Effect of crystal structure
cryst. syst. quadric orientation params. tensor

cubic sphere 1

T 0 0
0 T 0
0 0 T


tetragonal,
hexagonal,
trigonal

symm. around x⃗3 2

T1 0 0
0 T1 0
0 0 T3


orthorhombic

x⃗1, x⃗2, x⃗3

parallel to diads
3

T1 0 0
0 T2 0
0 0 T3


monoclinic x⃗2 parallel to diad 4

T11 0 T13

0 T22 0
T13 0 T33


triclinic - 6

T11 T12 T13

T12 T22 T23

T13 T23 T33


monoclinic: 3 eigenvalues + 1 angle

triclinic: 3 eigenvalues + 3 angles

others: crystal axes define tensor PAS
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Radius normal property
recall the representation quadric surface 1 = x⃗Tσx⃗

in PAS it is 1 = σ1x
2 + σ2y

2 + σ3z
2 with conductivities σ1, σ2, σ3

the tangent plane vector is t⃗(x⃗) = (2σ1x, 2σ2y, 2σ3z)
T

we compute as t⃗ =
−→
∇F (x, y, z) where 0 = F (x, y, z) = x⃗Tσx⃗− 1

statement: J⃗ = σE⃗ is parallel with t⃗(E⃗)

J⃗ = (σ1E1, σ2E2, σ3E3)
T t⃗(E⃗) = 2(σ1E1, σ2E2, σ3E3)

T
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Summary of lecture 3

Visualisation of tensors

applicable to symmetric rank-2 tensors

surface: collection of points that satisfy quadric equation

depending on eigenvalues of tensor we get different quadrics

quadric surfaces: sphere, ellipsoid, hyperboloid, cylinder etc.

quadrics transform naturally when transforming tensors

Effect of crystal structure

Neumann’s principle: physical properties of crystals must include
cryst. symmetries

therefore tensors include crystal symmetries via eigenvalues and
eigenvectors

these symmetries are also included by representation quadrics
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• This session is being recorded and will be available for students to view on-demand. The recording will be 
stored in the Panopto cloud and will be accessible using your SSO via Canvas/WebLearn (delete as 
appropriate). Access to this recording is restricted to students in this year group and registered on this 
course.

• Please be aware that all screen activity, including any active webcams/mics that are visible and/or audible, 
may be recorded.

For more information about lecture recording at the University, please consult the University’s Lecture 
Recording Policy.

If you have any questions or concerns, please email replay@it.ox.ac.uk
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Applications of tensors

now equipped with mathematical tools

illustrated concepts on linear response in anisotropic materials

there tensors expressed properties of materials

example J⃗ = σE⃗

some more advanced applications of tensors

mechanical stress and strain: tensor no longer property

thermal expansion: cause is scalar

stiffness via Hooke’s law: tensor no longer rank 2
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Stress tensor
take any infinitesimally small cube of material

traction vector T⃗ is force per unit area

that acts on the plane represented by area vector n⃗

T⃗ = σn⃗ Ti = σijnj

above guarantees rotational property σ′ = LσLT via Slide 19

stress tensor is not a property of material: rather a variable

equilibrium: tensile stresses equal but opposite σ(−n⃗) = −T⃗

Warning: row vector convention

often row vectors as T⃗T = n⃗Tσrow

need to use transpose σrow = σT

need to use inverse rotation LT for row
vectors

possible confusion: LT is inverse
rotation in our convention
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Equilibrium: conservation of angular momentum
decompose any matrix into symm. and antisymm. σ = σs + σa

we can define 2σs = σ + σT and 2σa = σ − σT

Cauchy: conservation of ang. mom. σ ≡ σs is symmetric[
σ11 σ12 σ13

σ21 σ22 σ23

σ31 σ32 σ33

]
=

σ11 0 0
0 σ22 0
0 0 σ33


︸ ︷︷ ︸

tensile

+

 0 σs
12 σs

13
σs
12 0 σs

23
σs
13 σs

23 0


︸ ︷︷ ︸

shear

+

 0 σa
12 σa

13
−σa

12 0 σa
23

−σa
13 −σa

23 0


︸ ︷︷ ︸

rotation

positive: tensile
negative: compressive

shear stress
conserves ang. mom.

rotation of the cube
zero in equilibrium
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Principal stresses

in equilibrium we can diagonalise σ = σT

but σ is not property of material: eigenvectors not necessarily
related to crystal axes

stress type principal comps. example tensor

triaxial 3 non-zero σk - diag(σ1, σ2, σ3)

biaxial 2 non-zero σk force on thin plate diag(σ1, σ2, 0)

uniaxial 1 non-zero σk pulling wire diag(σ1, 0, 0)

hydrostatic 3 identical σk < 0 pressure p in fluid diag(−p,−p,−p)

pure shear special biaxial rod torsion diag(−σ, σ, 0)

remark: how ‘big’ is the stress? no obvious metric as with vectors
matrix invariants: Tr(A), determinant and matrix norms as Tr(ATA)

37 / 42



Motivation Tensors Rotations Visualisation and Crystals Applications of tensors

Principal stresses

in equilibrium we can diagonalise σ = σT

but σ is not property of material: eigenvectors not necessarily
related to crystal axes

stress type principal comps. example tensor

triaxial 3 non-zero σk - diag(σ1, σ2, σ3)

biaxial 2 non-zero σk force on thin plate diag(σ1, σ2, 0)

uniaxial 1 non-zero σk pulling wire diag(σ1, 0, 0)

hydrostatic 3 identical σk < 0 pressure p in fluid diag(−p,−p,−p)

pure shear special biaxial rod torsion diag(−σ, σ, 0)

remark: how ‘big’ is the stress? no obvious metric as with vectors
matrix invariants: Tr(A), determinant and matrix norms as Tr(ATA)

37 / 42



Motivation Tensors Rotations Visualisation and Crystals Applications of tensors

Strain in 1D
length of small element ∆x increases due to stretching as ∆x+∆u

strain =
increase in length

original length
= lim

∆x→0

∆u

∆x
=

du

dx

small element (x, x+∆x) is increased to (x+u, x+∆x+u+∆u)

strain ϵ is the derivative of displacement u(x) wrt. position x

homogeneous: derivative constant, global property

Taylor expansion in homogeneous case: u(x)− u(0) = ϵx
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Strain in 3D
need to use vectors u⃗ = (u1, u2, u3)

T and x⃗ = (x1, x2, x3)
T

tensor: partial derivatives of displacement field wrt position

ϵ̃ij =
∂ui

∂xj

as before, antisymmetric part (ϵ̃ij − ϵ̃ji)/2 is rotation

strain is a symmetric, rank-2 tensor

ϵij = (
∂ui

∂xj
+

∂uj

∂xi
)/2

ϵ =

ϵ11 0 0
0 ϵ22 0
0 0 ϵ33


︸ ︷︷ ︸
uniaxial extension

+

 0 ϵ12 ϵ13
ϵ12 0 ϵ23
ϵ13 ϵ23 0


︸ ︷︷ ︸

shear

diagonals ϵ11, ϵ22, ϵ33 are uniaxial extensions per unit length

off-diagonals are shear strains – coordinate syst. dependent

homogeneous case: u⃗(x⃗)− u⃗(0) = ϵx⃗
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Pure shear stress and strain
assume the pure shear stress and strain tensors

σ =

0 σ 0
σ 0 0
0 0 0

 ϵ =

0 ϵ 0
ϵ 0 0
0 0 0


both can be diagonalised by a 45◦ rotation of the coord. syst.

two eigenvalues ±σ and ±ϵ

for strain ϵ = ϵ12 = (∂u1

∂x2
+ ∂u2

∂x1
)/2 = tan(θ) ≈ θ

shear stress shear strain
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Strain tensor via thermal expansion
material is heated up uniformly by ∆T

strain tensor is proportional to this temperature

proportionality: symmetric thermal expansion coefficients αij

ϵ = α∆T ϵij = αij∆T

eigenvalues and eigenvectors contain crystal symmetries

principal components ϵi = αi∆T , e.g., along crystal axes

αi are typically positive, but can be negative

volume expansion is ∆V ≈ (α1 + α2 + α3)V∆T an invariant
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Hooke’s law and linear elasticity
in case of a 1D spring we have Hooke’s law

F = kx

can relate stress and strain in an elastic material

linear mapping via rank-4 stiffness tensor cijkl

σij = cijkl ϵkl

cijkl may generally have 34 = 81 entries, but reduces to 21

example: σij = σji, therefore cijkl = cjikl

example: ϵkl = ϵlk, therefore cijkl = cijlk

in crystals this further reduces due to sytmmetries in ϵkl

orthorhombic crystals: 9 entries, hexagonal crystals: 5, cubic: 3
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