

Tensor Properties of Materials

Bálint Koczor

– 2023 –

NOTICE OF LECTURE RECORDING

- This session is being recorded and will be available for students to view on-demand. The recording will be stored in the Panopto cloud and will be accessible using your SSO via Canvas/WebLearn (delete as appropriate). Access to this recording is restricted to students in this year group and registered on this course.
- Please be aware that all screen activity, including any active webcams/mics that are visible and/or audible, may be recorded.

For more information about lecture recording at the University, please consult the University's Lecture Recording Policy.

If you have any questions or concerns, please email replay@it.ox.ac.uk

1. Basic principles

- Properties and variables
- Scalar and vector variables
- Tensor properties
- Crystal symmetry, Neumann's principle
- Transformation of coordinates, transformation of vectors and tensors
- Representation surface, principal axes

2. Second-rank tensors

- Thermal and electrical conductivity
- Electrical and magnetic susceptibility
- Stress and strain
- Thermal expansion
- Optical properties of crystals

3. Third and fourth-rank tensors

- Piezoelectricity
- Elastic stiffness and compliance
- Elastic properties of cubic and isotropic crystals

Linear response in materials

effect	proportionality (property of material)	cause (external)
current density J	conductivity σ	electric field E
el. polaris. P	el. suscept. $\epsilon_0\chi$	electric field E
thermal exp. ϵ	thermal exp. coeff. α	change of temp. ΔT
stress σ	stiffness C	strain ϵ

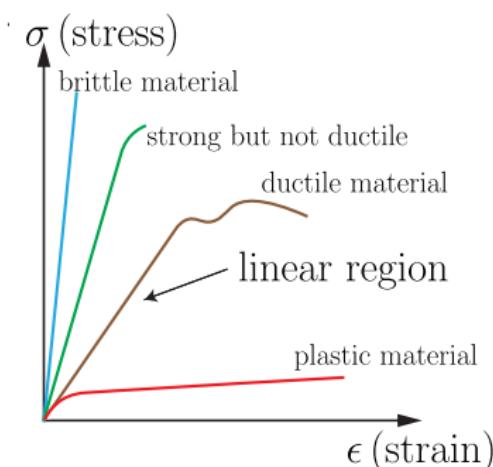
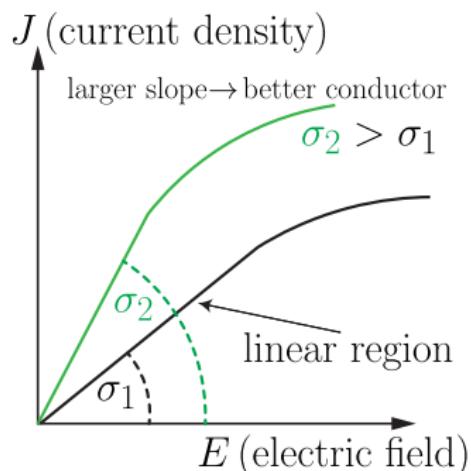
Linear response in materials

effect	proportionality (property of material)	cause (external)
current density J	conductivity σ	electric field E
el. polaris. P	el. suscept. $\epsilon_0 \chi$	electric field E
thermal exp. ϵ	thermal exp. coeff. α	change of temp. ΔT
stress σ	stiffness C	strain ϵ

- valid only in 1D – we need to go beyond numbers J , P etc.
- a physical quantity has both magnitude and direction
- linear relations in vector fields $\vec{J} = \sigma \vec{E}$

Linear approximation

deviation from linear: too large current → thermal effects, breakdown

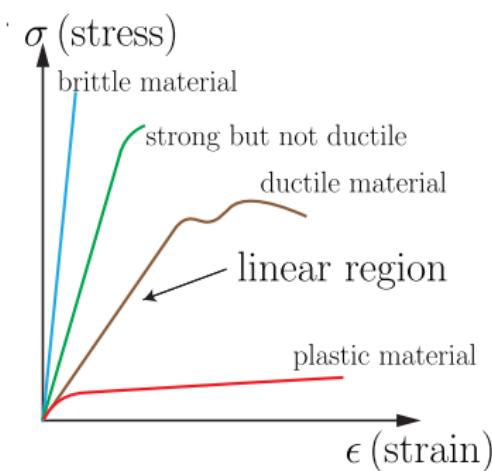
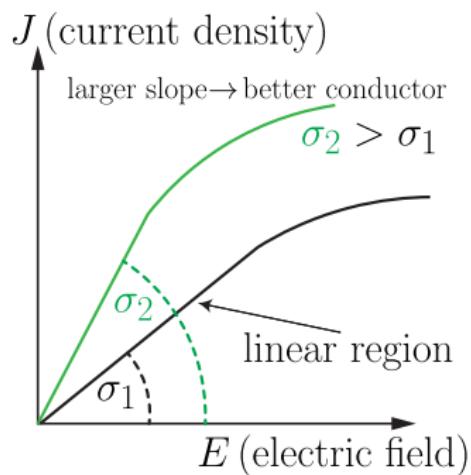


- when cause is 'small' then effect is linear via a Taylor series

$$f(x) = f(0) + f'(0)x + \dots$$
- slope $f'(x) = \sigma$ is the proportionality: property of the material

Linear approximation

deviation from linear: too large current \rightarrow thermal effects, breakdown



- when cause is 'small' then effect is linear via a Taylor series

$$f(x) = f(0) + f'(0)x + \dots$$
- slope $f'(x) = \sigma$ is the proportionality: property of the material
- in isotropic material σ independent of direction of \vec{E}
- linear** but anisotropic material: we need to use tensors

isotropic material

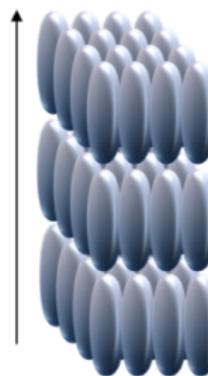
- macroscopic properties
independent of direction
- amorphous materials: glass
- small-grained polycrystalline materials: averaging
- some crystals: linear response in cubic crystals
- proportional vectors $\vec{J} = \sigma \vec{E}$

isotropic material

- macroscopic properties **independent of direction**
- amorphous materials: glass
- small-grained polycrystalline materials: averaging
- some crystals: linear response in cubic crystals
- proportional vectors $\vec{J} = \sigma \vec{E}$

anisotropic material

- macroscopic properties **depend on direction**
- liquid crystals
- fibre composites: wood, reinforced concrete
- single crystals: most crystal lattices
- need to write $\vec{J} = \text{tensor} \cdot \vec{E}$



Applications of anisotropy

anisotropy is the key to so many technologies and applications

Piezoelectricity

- quartz oscillators – clock frequency in computers
- gas lighters
- stepper motors and high-precision positioning
- sensors – microphones

Optical devices

- polarisers
- beam splitters

Liquid crystals

- LCD screen, displays
- watch
- etc.

Thought experiment in anisotropic materials

vector $\vec{J} = (J_x, J_y, J_z)$ not necessarily parallel to $\vec{E} = (E_x, E_y, E_z)$

- we apply electric field \vec{E} to anisotropic material (**cause**)
- measure the resulting current density vector \vec{J} (**effect**)
- linearity: $2\vec{E}$ results in $2\vec{J}$ with same direction

Thought experiment in anisotropic materials

vector $\vec{J} = (J_x, J_y, J_z)$ not necessarily parallel to $\vec{E} = (E_x, E_y, E_z)$

- we apply electric field \vec{E} to anisotropic material (**cause**)
- measure the resulting current density vector \vec{J} (**effect**)
- linearity: $2\vec{E}$ results in $2\vec{J}$ with same direction

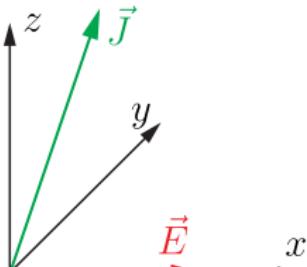
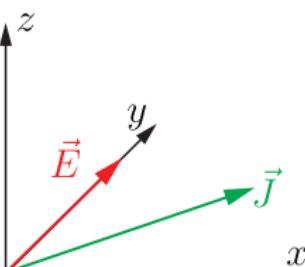
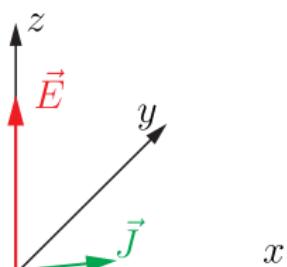
x direction

apply $\vec{E} = E_x \vec{x}$

$$J_x = \sigma_{xx} E_x$$

$$J_y = \sigma_{yx} E_x$$

$$J_z = \sigma_{zx} E_x$$



Thought experiment in anisotropic materials

vector $\vec{J} = (J_x, J_y, J_z)$ not necessarily parallel to $\vec{E} = (E_x, E_y, E_z)$

- we apply electric field \vec{E} to anisotropic material (**cause**)
- measure the resulting current density vector \vec{J} (**effect**)
- linearity: $2\vec{E}$ results in $2\vec{J}$ with same direction

x direction	y direction
apply $\vec{E} = E_x \vec{x}$	apply $\vec{E} = E_y \vec{y}$

$$J_x = \sigma_{xx} E_x$$

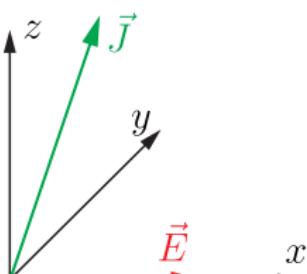
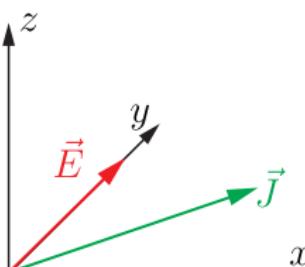
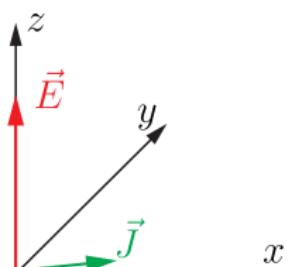
$$J_y = \sigma_{yx} E_x$$

$$J_z = \sigma_{zx} E_x$$

$$J_x = \sigma_{xy} E_y$$

$$J_y = \sigma_{yy} E_y$$

$$J_z = \sigma_{zy} E_y$$



Thought experiment in anisotropic materials

vector $\vec{J} = (J_x, J_y, J_z)$ not necessarily parallel to $\vec{E} = (E_x, E_y, E_z)$

- we apply electric field \vec{E} to anisotropic material (**cause**)
- measure the resulting current density vector \vec{J} (**effect**)
- linearity: $2\vec{E}$ results in $2\vec{J}$ with same direction

x direction	y direction	z direction
apply $\vec{E} = E_x \vec{x}$	apply $\vec{E} = E_y \vec{y}$	apply $\vec{E} = E_z \vec{z}$

$$J_x = \sigma_{xx} E_x$$

$$J_x = \sigma_{xy} E_y$$

$$J_x = \sigma_{xz} E_z$$

$$J_y = \sigma_{yx} E_x$$

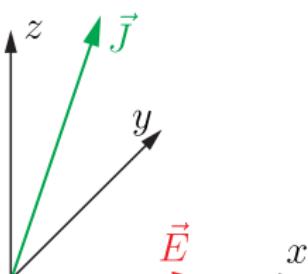
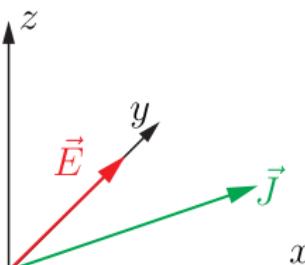
$$J_y = \sigma_{yy} E_y$$

$$J_y = \sigma_{yz} E_z$$

$$J_z = \sigma_{zx} E_x$$

$$J_z = \sigma_{zy} E_y$$

$$J_z = \sigma_{zz} E_z$$



Writing linear equations compactly

linearity: if we apply $\vec{E} = (E_x, E_y, E_z)$ we sum x, y, z contributions

$$J_x = \sigma_{xx}E_x + \sigma_{xy}E_y + \sigma_{xz}E_z,$$

$$J_y = \sigma_{yx}E_x + \sigma_{yy}E_y + \sigma_{yz}E_z$$

$$J_z = \sigma_{zx}E_x + \sigma_{zy}E_y + \sigma_{zz}E_z$$

Writing linear equations compactly

linearity: if we apply $\vec{E} = (E_x, E_y, E_z)$ we sum x, y, z contributions

$$J_x = \sigma_{xx}E_x + \sigma_{xy}E_y + \sigma_{xz}E_z,$$

$$J_y = \sigma_{yx}E_x + \sigma_{yy}E_y + \sigma_{yz}E_z$$

$$J_z = \sigma_{zx}E_x + \sigma_{zy}E_y + \sigma_{zz}E_z$$

- notation for axes $\vec{x} = \vec{x}_1, \vec{y} = \vec{x}_2$ and $\vec{z} = \vec{x}_3$
- and for vector components $J_x = J_1, J_y = J_2$ and $J_z = J_3$
- and we denote the indexes: $i, j, k, l \dots \in \{1, 2, 3\}$

Writing linear equations compactly

linearity: if we apply $\vec{E} = (E_x, E_y, E_z)$ we sum x, y, z contributions

$$J_x = \sigma_{xx}E_x + \sigma_{xy}E_y + \sigma_{xz}E_z,$$

$$J_y = \sigma_{yx}E_x + \sigma_{yy}E_y + \sigma_{yz}E_z$$

$$J_z = \sigma_{zx}E_x + \sigma_{zy}E_y + \sigma_{zz}E_z$$

- notation for axes $\vec{x} = \vec{x}_1, \vec{y} = \vec{x}_2$ and $\vec{z} = \vec{x}_3$
- and for vector components $J_x = J_1, J_y = J_2$ and $J_z = J_3$
- and we denote the indexes: $i, j, k, l \dots \in \{1, 2, 3\}$
- use compact **Einstein convention** or **matrix/vector prod.**

$$J_i = \sum_{j=1}^3 \sigma_{ij}E_j \equiv \sigma_{ij}E_j$$

$$\begin{bmatrix} J_1 \\ J_2 \\ J_3 \end{bmatrix} = \begin{bmatrix} \sigma_{11} & \sigma_{12} & \sigma_{13} \\ \sigma_{21} & \sigma_{22} & \sigma_{23} \\ \sigma_{31} & \sigma_{32} & \sigma_{33} \end{bmatrix} \begin{bmatrix} E_1 \\ E_2 \\ E_3 \end{bmatrix}$$

What is a tensor?

rank- r array of numbers

$r = 0$ scalar: T	$r = 1$ vector: V_i	$r = 2$ matrix: M_{ij}	$r = 3$ (3D) array: A_{ijk}
1 2 3	$V = \begin{bmatrix} \vdots \\ i \\ \vdots \end{bmatrix} \rightarrow V_i$	$M = \begin{bmatrix} \vdots & & \\ i & \vdots & \\ & & \vdots \end{bmatrix} \rightarrow M_{ij}$	$A = \begin{bmatrix} \vdots & & & \\ i & \vdots & & \\ & & \vdots & \\ & & & k \end{bmatrix} \rightarrow A_{ijk}$

- very useful in so many applications
- materials: express linear properties of materials
- machine learning: tensors are weights in neural networks

Matrix and vector notation

- for rank $r = 1, 2$ can use compact **matrix/vector notations**
- for rank $r \geq 2$ need to use tensors and **Einstein summation**
- Einstein convention: we imply summing over repeated indexes

explicit	Einstein conv.	matrix notation	type
$a = \sum_{i=1}^3 v_i w_i$	$a = v_i w_i$	$a = \vec{v} \cdot \vec{w}$	vector/vector
$a_i = \sum_{j=1}^3 T_{ij} v_j$	$a_i = T_{ij} v_j$	$\vec{a} = \mathbf{T} \cdot \vec{v}$	matrix/vector
$R_{ik} = \sum_{j=1}^3 S_{ij} T_{jk}$	$R_{ik} = S_{ij} T_{jk}$	$\mathbf{R} = \mathbf{S} \cdot \mathbf{T}$	matrix/matrix
$R_{ij} = \sum_{k,l=1}^3 S_{ij} T_{kl}$	$R_{ij} = S_{ij} T_{kl}$		

Matrix and vector notation

- for rank $r = 1, 2$ can use compact **matrix/vector notations**
- for rank $r \geq 2$ need to use tensors and **Einstein summation**
- Einstein convention: we imply summing over repeated indexes

explicit	Einstein conv.	matrix notation	type
$a = \sum_{i=1}^3 v_i w_i$	$a = v_i w_i$	$a = \vec{v} \cdot \vec{w}$	vector/vector
$a_i = \sum_{j=1}^3 T_{ij} v_j$	$a_i = T_{ij} v_j$	$\vec{a} = \mathbf{T} \cdot \vec{v}$	matrix/vector
$R_{ik} = \sum_{j=1}^3 S_{ij} T_{jk}$	$R_{ik} = S_{ij} T_{jk}$	$\mathbf{R} = \mathbf{S} \cdot \mathbf{T}$	matrix/matrix
$R_{ij} = \sum_{k,l=1}^3 S_{ij} T_{kl}$	$R_{ij} = S_{ij} T_{kl}$		

- tensors (as well as matrices/vectors) express linear relations
- apply electric field twice as large $\vec{E} \rightarrow 2\vec{E}$ then effect $\vec{J} \rightarrow 2\vec{J}$
- **linearity:** if we make $\sigma_{ij} \rightarrow 2\sigma_{ij}$ twice as large, same effect

Summary of lecture 1

Basic principles

- cause-effect: linear relations used when cause is small
- anisotropy: macroscopic properties depend on direction
- cause vector is not necessarily parallel to effect vector
- in this case we used tensors to express linear relations

Tensors basics

- tensors, such as T_{ijk} , are rank- r arrays of numbers
- with materials we work in 3D and indexes run for $i, j, k = 1, 2, 3$
- rank 1 and rank 2: we can use matrices and vectors
- for higher ranks we use Einstein convention: summation over repeated index is implied

NOTICE OF LECTURE RECORDING

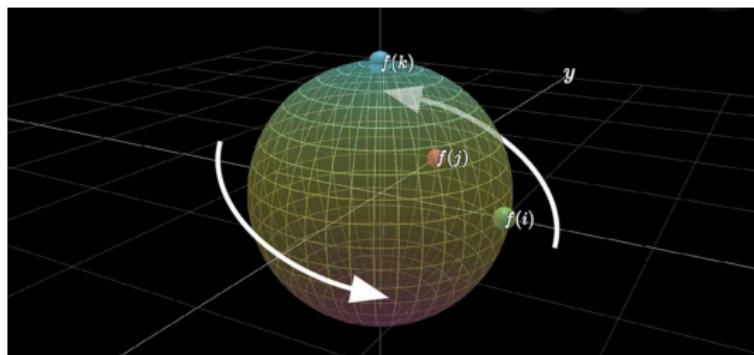
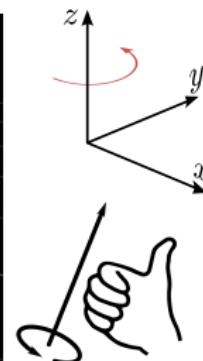
- This session is being recorded and will be available for students to view on-demand. The recording will be stored in the Panopto cloud and will be accessible using your SSO via Canvas/WebLearn (delete as appropriate). Access to this recording is restricted to students in this year group and registered on this course.
- Please be aware that all screen activity, including any active webcams/mics that are visible and/or audible, may be recorded.

For more information about lecture recording at the University, please consult the University's Lecture Recording Policy.

If you have any questions or concerns, please email replay@it.ox.ac.uk

Coordinate system rotations

- isotropic materials: rotation does not affect properties
- anisotropic materials: problems simplify when viewed in specific coordinate systems – we want to apply rotations

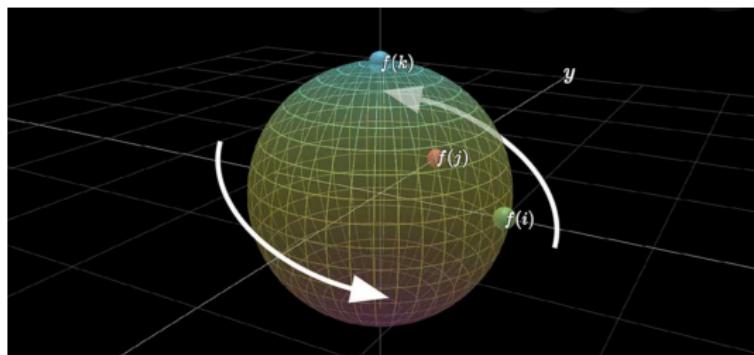
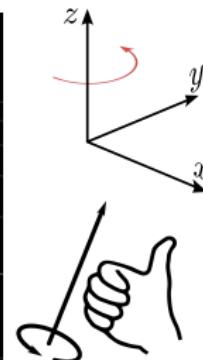


Coordinate system rotations

- isotropic materials: rotation does not affect properties
- anisotropic materials: problems simplify when viewed in specific coordinate systems – we want to apply rotations
- compactly describe rotations using rotation matrices

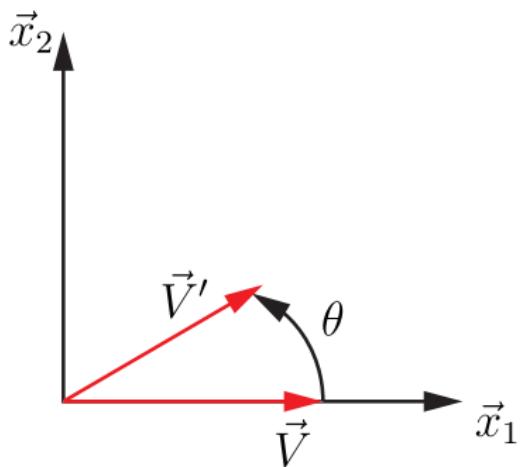
$$\vec{J}' = \mathbf{L} \vec{J} \quad J'_i = L_{ij} J_j$$

- computer graphics: rotate vectors whenever we move camera



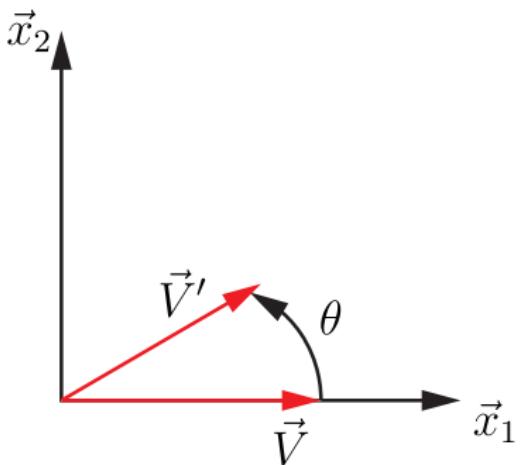
Example: matrix of rotation around z axis

Rotate vectors that are parallel with coord. axes: $V_1 \vec{x}_1$, $V_2 \vec{x}_2$, $V_3 \vec{x}_3$



Example: matrix of rotation around z axis

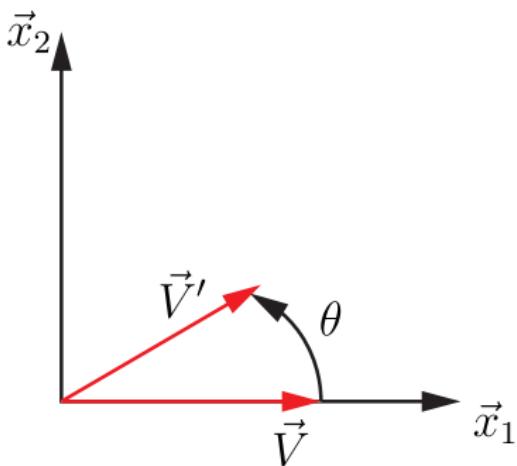
Rotate vectors that are parallel with coord. axes: $V_1 \vec{x}_1$, $V_2 \vec{x}_2$, $V_3 \vec{x}_3$



$$\mathbf{L} \begin{bmatrix} V_1 \\ 0 \\ 0 \end{bmatrix} = V_1 \begin{bmatrix} \cos \theta \\ \sin \theta \\ 0 \end{bmatrix}$$

Example: matrix of rotation around z axis

Rotate vectors that are parallel with coord. axes: $V_1 \vec{x}_1$, $V_2 \vec{x}_2$, $V_3 \vec{x}_3$

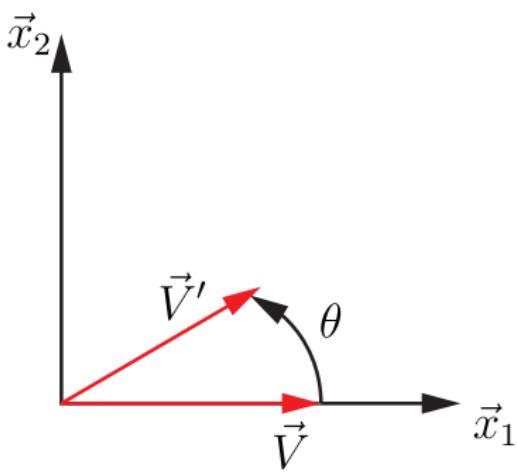


$$\mathbf{L} \begin{bmatrix} V_1 \\ 0 \\ 0 \end{bmatrix} = V_1 \begin{bmatrix} \cos \theta \\ \sin \theta \\ 0 \end{bmatrix}$$

$$\mathbf{L} \begin{bmatrix} 0 \\ V_2 \\ 0 \end{bmatrix} = V_2 \begin{bmatrix} -\sin \theta \\ \cos \theta \\ 0 \end{bmatrix}$$

Example: matrix of rotation around z axis

Rotate vectors that are parallel with coord. axes: $V_1 \vec{x}_1$, $V_2 \vec{x}_2$, $V_3 \vec{x}_3$



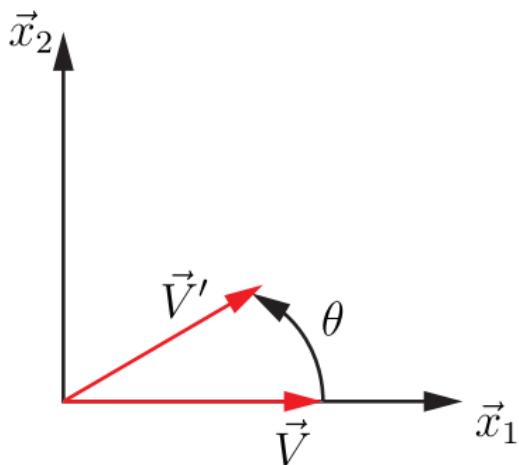
$$\mathbf{L} \begin{bmatrix} V_1 \\ 0 \\ 0 \end{bmatrix} = V_1 \begin{bmatrix} \cos \theta \\ \sin \theta \\ 0 \end{bmatrix}$$

$$\mathbf{L} \begin{bmatrix} 0 \\ V_2 \\ 0 \end{bmatrix} = V_2 \begin{bmatrix} -\sin \theta \\ \cos \theta \\ 0 \end{bmatrix}$$

$$\mathbf{L} \begin{bmatrix} 0 \\ 0 \\ V_3 \end{bmatrix} = V_3 \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

Example: matrix of rotation around z axis

Rotate vectors that are parallel with coord. axes: $V_1 \vec{x}_1$, $V_2 \vec{x}_2$, $V_3 \vec{x}_3$



$$\mathbf{L} \begin{bmatrix} V_1 \\ 0 \\ 0 \end{bmatrix} = V_1 \begin{bmatrix} \cos \theta \\ \sin \theta \\ 0 \end{bmatrix}$$

$$\mathbf{L} \begin{bmatrix} 0 \\ V_2 \\ 0 \end{bmatrix} = V_2 \begin{bmatrix} -\sin \theta \\ \cos \theta \\ 0 \end{bmatrix}$$

$$\mathbf{L} \begin{bmatrix} 0 \\ 0 \\ V_3 \end{bmatrix} = V_3 \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

- a general vector is just the sum $\vec{V} = V_1 \vec{x}_1 + V_2 \vec{x}_2 + V_3 \vec{x}_3$
- right-hand sides above must be column vectors of \mathbf{L}

$$\begin{bmatrix} V'_1 \\ V'_2 \\ V'_3 \end{bmatrix} = \begin{bmatrix} \cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} V_1 \\ V_2 \\ V_3 \end{bmatrix}$$

Basic and general rotations

Basic rotation matrices:

$$R_x = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta \\ 0 & \sin \theta & \cos \theta \end{bmatrix}, R_y = \begin{bmatrix} \cos \theta & 0 & \sin \theta \\ 0 & 1 & 0 \\ -\sin \theta & 0 & \cos \theta \end{bmatrix}, R_z = \begin{bmatrix} \cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{bmatrix}.$$

Basic and general rotations

Basic rotation matrices:

$$R_x = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta \\ 0 & \sin \theta & \cos \theta \end{bmatrix}, R_y = \begin{bmatrix} \cos \theta & 0 & \sin \theta \\ 0 & 1 & 0 \\ -\sin \theta & 0 & \cos \theta \end{bmatrix}, R_z = \begin{bmatrix} \cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{bmatrix}.$$

But how about an off-axis rotation? General rot. matrix \mathbf{L}

$$\mathbf{L} = \begin{bmatrix} L_{11} & L_{12} & L_{13} \\ L_{21} & L_{22} & L_{23} \\ L_{31} & L_{32} & L_{33} \end{bmatrix}, \quad \mathbf{L} \text{ must be orthogonal and } \det \mathbf{L} = 1$$

Basic and general rotations

Basic rotation matrices:

$$R_x = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta \\ 0 & \sin \theta & \cos \theta \end{bmatrix}, R_y = \begin{bmatrix} \cos \theta & 0 & \sin \theta \\ 0 & 1 & 0 \\ -\sin \theta & 0 & \cos \theta \end{bmatrix}, R_z = \begin{bmatrix} \cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{bmatrix}.$$

But how about an off-axis rotation? General rot. matrix \mathbf{L}

$$\mathbf{L} = \begin{bmatrix} L_{11} & L_{12} & L_{13} \\ L_{21} & L_{22} & L_{23} \\ L_{31} & L_{32} & L_{33} \end{bmatrix}, \quad \mathbf{L} \text{ must be orthogonal and } \det \mathbf{L} = 1$$

We can use \mathbf{L} to rotate all axes $\vec{x}'_i = \mathbf{L}\vec{x}_i$ (see colour in prev. slide)

$$\vec{x}'_1 = \begin{bmatrix} L_{11} \\ L_{21} \\ L_{31} \end{bmatrix}, \quad \vec{x}'_2 = \begin{bmatrix} L_{12} \\ L_{22} \\ L_{32} \end{bmatrix}, \quad \vec{x}'_3 = \begin{bmatrix} L_{13} \\ L_{23} \\ L_{33} \end{bmatrix}$$

- $L_{ij} = \cos \theta_{ij}$ are scalar products between orig. and new axes
- **example:** θ_{12} is angle between original \vec{x}_1 and new \vec{x}'_2

Orthogonal matrices

- **But** new coordinate axes \vec{x}'_i must be orthogonal and normalised
- **example:** $L_{i1}L_{i1} = \vec{x}'_1 \cdot \vec{x}'_1 = 1$ while $L_{i1}L_{i2} = \vec{x}'_1 \cdot \vec{x}'_2 = 0$

Orthogonal matrices

- **But** new coordinate axes \vec{x}'_i must be orthogonal and normalised
- **example:** $L_{i1}L_{i1} = \vec{x}'_1 \cdot \vec{x}'_1 = 1$ while $L_{i1}L_{i2} = \vec{x}'_1 \cdot \vec{x}'_2 = 0$
- in \mathbf{L} column and row vectors are mutually orthogonal

$$\mathbf{L}^T \mathbf{L} = \mathbb{1} \quad L_{ij}L_{ik} = \delta_{jk}$$

- Kronecker delta $\delta_{ij} = 1$ when $i = j$ and $\delta_{ij} = 0$ otherwise
- guarantees transpose is inverse operation $\mathbf{L}^T J' = J$

Orthogonal matrices

- **But** new coordinate axes \vec{x}'_i must be orthogonal and normalised
- **example:** $L_{i1}L_{i1} = \vec{x}'_1 \cdot \vec{x}'_1 = 1$ while $L_{i1}L_{i2} = \vec{x}'_1 \cdot \vec{x}'_2 = 0$
- in **L** column and row vectors are mutually orthogonal

$$\mathbf{L}^T \mathbf{L} = \mathbf{1} \quad L_{ij}L_{ik} = \delta_{jk}$$

- Kronecker delta $\delta_{ij} = 1$ when $i = j$ and $\delta_{ij} = 0$ otherwise
- guarantees transpose is inverse operation $\mathbf{L}^T J' = J$

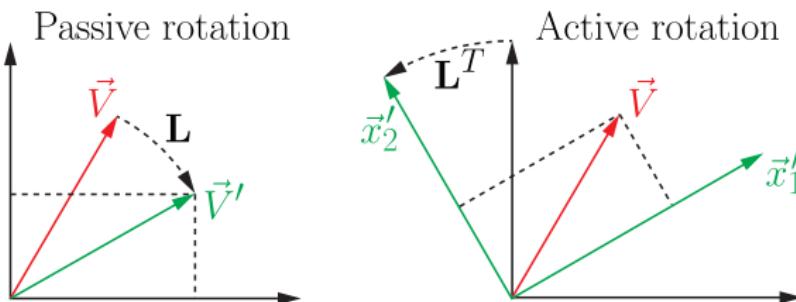
reminder: diagonalising matrices via eigenvectors

$$\mathbf{M} = \mathbf{L} \begin{bmatrix} \lambda_1 & 0 & 0 \\ 0 & \lambda_2 & 0 \\ 0 & 0 & \lambda_3 \end{bmatrix} \mathbf{L}^T$$

- diagonalise **real, symmetric** matrix **M** with **real eigenvalues λ_i**
- here **L** contains eigenvectors of **M** as columns – orthogonal

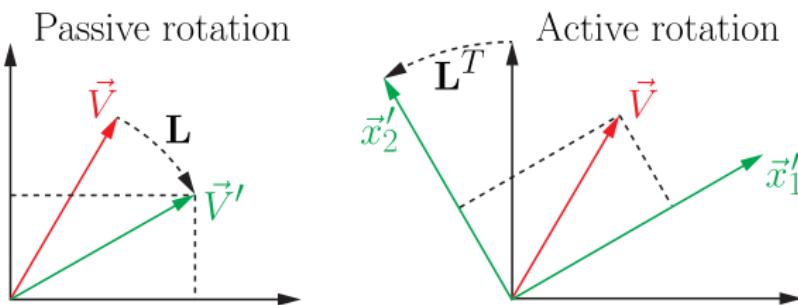
Active and Passive rotations

- so far, actively rotated vector to a new one $\vec{J}' = \mathbf{L}\vec{J}$
- physical variable \vec{J} should not change, just frame of ref
- passive: vector \vec{J} remains unchanged, entries wrt new coord syst



Active and Passive rotations

- so far, actively rotated vector to a new one $\vec{J}' = \mathbf{L}\vec{J}$
- physical variable \vec{J} should not change, just frame of ref
- passive: vector \vec{J} remains unchanged, entries wrt new coord syst



active rotation $\vec{V}' = \mathbf{L}\vec{V}$ **equivalent to:** passive rotation with inversely rotated coord syst $\vec{x}'_i = \mathbf{L}^T\vec{x}_i$

Rotating tensors

one coordinate system \vec{E} and \vec{J} , in other one $\vec{E}' = \mathbf{L}\vec{E}$ and $\vec{J}' = \mathbf{L}\vec{J}$

Rotating tensors

one coordinate system \vec{E} and \vec{J} , in other one $\vec{E}' = \mathbf{L}\vec{E}$ and $\vec{J}' = \mathbf{L}\vec{J}$

$$\vec{J} = \boldsymbol{\sigma}\vec{E}$$

substitute $\vec{J} = \mathbf{L}^T \vec{J}'$ and $\vec{E} = \mathbf{L}^T \vec{E}'$

$$\mathbf{L}^T \vec{J}' = \boldsymbol{\sigma} \mathbf{L}^T \vec{E}'$$

multiply with \mathbf{L} from left

$$\mathbf{L}\mathbf{L}^T \vec{J}' = \mathbf{L}\boldsymbol{\sigma}' \mathbf{L}^T \vec{E}'$$

simplify $\mathbf{L}\mathbf{L}^T = \mathbf{1}$

$$\vec{J}' = \mathbf{L}\boldsymbol{\sigma} \mathbf{L}^T \vec{E}'$$

denote $\boldsymbol{\sigma}' = \mathbf{L}\boldsymbol{\sigma} \mathbf{L}^T$

$$\vec{J}' = \boldsymbol{\sigma}' \vec{E}'$$

Rotating tensors

one coordinate system \vec{E} and \vec{J} , in other one $\vec{E}' = \mathbf{L}\vec{E}$ and $\vec{J}' = \mathbf{L}\vec{J}$

$$\vec{J} = \boldsymbol{\sigma} \vec{E}$$

substitute $\vec{J} = \mathbf{L}^T \vec{J}'$ and $\vec{E} = \mathbf{L}^T \vec{E}'$

$$\mathbf{L}^T \vec{J}' = \boldsymbol{\sigma} \mathbf{L}^T \vec{E}'$$

multiply with \mathbf{L} from left

$$\mathbf{L} \mathbf{L}^T \vec{J}' = \mathbf{L} \boldsymbol{\sigma}' \mathbf{L}^T \vec{E}'$$

simplify $\mathbf{L} \mathbf{L}^T = \mathbf{1}$

$$\vec{J}' = \mathbf{L} \boldsymbol{\sigma} \mathbf{L}^T \vec{E}'$$

denote $\boldsymbol{\sigma}' = \mathbf{L} \boldsymbol{\sigma} \mathbf{L}^T$

$$\vec{J}' = \boldsymbol{\sigma}' \vec{E}'$$

Tensor entries transform due to rotation

$$\boldsymbol{\sigma}' = \mathbf{L} \boldsymbol{\sigma} \mathbf{L}^T$$

$$\sigma'_{ij} = L_{ik} \sigma_{kl} L_{jl}$$

Rotating tensors

one coordinate system \vec{E} and \vec{J} , in other one $\vec{E}' = \mathbf{L}\vec{E}$ and $\vec{J}' = \mathbf{L}\vec{J}$

$$\vec{J} = \boldsymbol{\sigma} \vec{E}$$

substitute $\vec{J} = \mathbf{L}^T \vec{J}'$ and $\vec{E} = \mathbf{L}^T \vec{E}'$

$$\mathbf{L}^T \vec{J}' = \boldsymbol{\sigma} \mathbf{L}^T \vec{E}'$$

multiply with \mathbf{L} from left

$$\mathbf{L}\mathbf{L}^T \vec{J}' = \mathbf{L}\boldsymbol{\sigma}' \mathbf{L}^T \vec{E}'$$

simplify $\mathbf{L}\mathbf{L}^T = \mathbf{1}$

$$\vec{J}' = \mathbf{L}\boldsymbol{\sigma} \mathbf{L}^T \vec{E}'$$

denote $\boldsymbol{\sigma}' = \mathbf{L}\boldsymbol{\sigma} \mathbf{L}^T$

$$\vec{J}' = \boldsymbol{\sigma}' \vec{E}'$$

Tensor entries transform due to rotation

$$\boldsymbol{\sigma}' = \mathbf{L}\boldsymbol{\sigma} \mathbf{L}^T$$

$$\sigma'_{ij} = L_{ik}\sigma_{kl}L_{jl}$$

remark: formal definition of a rank- r Cartesian tensor

- a rank- r array of real numbers $T_{i_1 i_2 \dots i_r}$ as before
- transforms according to $T'_{i_1 i_2 \dots i_r} = L_{i_1 j_1} L_{i_2 j_2} \dots L_{i_r j_r} T_{j_1 j_2 \dots j_r}$
- when vectors transform according to $V'_i = \mathbf{L}_{ij} V_j$

Principal axis system

- given a **symmetric** rank-2 tensor $\sigma_{ij} = \sigma_{ji}$ as the matrix σ
- much simpler to work with tensor in the **principal axis system**
- column vectors of \mathbf{L} are the eigenvectors \vec{x}_i^{pas} as **principal axes**

Principal axis system

- given a **symmetric** rank-2 tensor $\sigma_{ij} = \sigma_{ji}$ as the matrix $\boldsymbol{\sigma}$
- much simpler to work with tensor in the **principal axis system**
- column vectors of \mathbf{L} are the eigenvectors \vec{x}_i^{pas} as **principal axes**

$$\boldsymbol{\sigma} = \mathbf{L} \begin{bmatrix} \sigma_1^{pas} & 0 & 0 \\ 0 & \sigma_2^{pas} & 0 \\ 0 & 0 & \sigma_3^{pas} \end{bmatrix} \mathbf{L}^T$$

- eigenvalues σ_i^{pas} are **principal components**, here conductivities
- parallel **cause** and **effect** in principal directions: eigenvalue eq.

Principal axis system

- given a **symmetric** rank-2 tensor $\sigma_{ij} = \sigma_{ji}$ as the matrix $\boldsymbol{\sigma}$
- much simpler to work with tensor in the **principal axis system**
- column vectors of \mathbf{L} are the eigenvectors \vec{x}_i^{pas} as **principal axes**

$$\boldsymbol{\sigma} = \mathbf{L} \begin{bmatrix} \sigma_1^{pas} & 0 & 0 \\ 0 & \sigma_2^{pas} & 0 \\ 0 & 0 & \sigma_3^{pas} \end{bmatrix} \mathbf{L}^T$$

- eigenvalues σ_i^{pas} are **principal components**, here conductivities
- parallel **cause** and **effect** in principal directions: eigenvalue eq.

$$\vec{J} = \boldsymbol{\sigma} \vec{E} \quad \text{substitute } \vec{E} = \vec{x}_i^{pas}$$

$$\vec{J} = \boldsymbol{\sigma} \vec{x}_i^{pas} \quad \text{eigenvalue eq. } \boldsymbol{\sigma} \vec{x}_i^{pas} = \sigma_i^{pas} \vec{x}_i^{pas}$$

$$\vec{J} = \sigma_i^{pas} \vec{x}_i^{pas} \quad \text{substitute back } \vec{x}_i^{pas} = \vec{E}$$

$$\vec{J} = \sigma_i^{pas} \vec{E} \quad \text{proportionality is a scalar } \sigma_i^{pas}$$

Summary of lecture 2

Rotations

- simplify description of anisotropic materials
- rotated axis vectors $\vec{x}'_i = \mathbf{L}\vec{x}_i$ are column vectors of \mathbf{L}
- active $\mathbf{L}\vec{v}$ equivalent to inverse passive rot of coord syst
- \mathbf{L} transforms tensors into new coord syst as $\mathbf{L}\mathbf{T}\mathbf{L}^T$

Principal axis system

- can always find a rotation that diagonalises a (symmetric) tensor
- eigenvectors of matrix are the **principal axes**
- eigenvalues of the matrix are the **principal tensor components**
- cause and effect are parallel in the principal directions

NOTICE OF LECTURE RECORDING

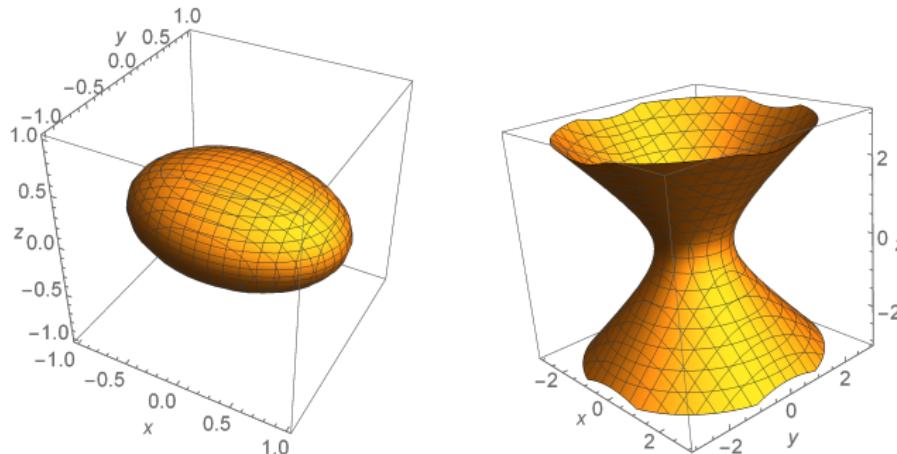
- This session is being recorded and will be available for students to view on-demand. The recording will be stored in the Panopto cloud and will be accessible using your SSO via Canvas/WebLearn (delete as appropriate). Access to this recording is restricted to students in this year group and registered on this course.
- Please be aware that all screen activity, including any active webcams/mics that are visible and/or audible, may be recorded.

For more information about lecture recording at the University, please consult the University's Lecture Recording Policy.

If you have any questions or concerns, please email replay@it.ox.ac.uk

Visualisation and crystal symmetries

- rotations are crucial for treating anisotropy
- rotation matrices are very useful for computations
- **but** tensors rather abstract objects → visualisation
- we now introduce intuitive visualisations of tensors

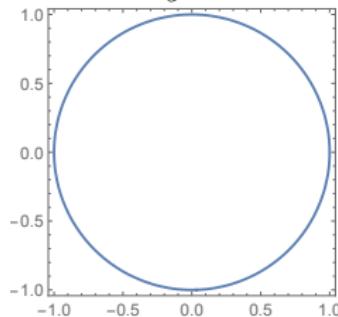


- single crystals have high symmetry
- this manifests in tensor properties

Reminder: surfaces via implicit equations

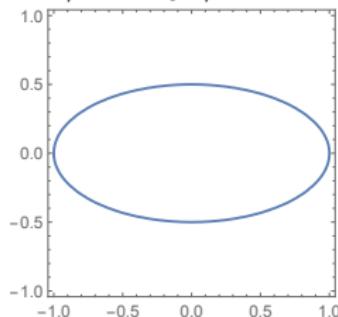
2D circle

$$x^2 + y^2 = 1$$



2D ellipse

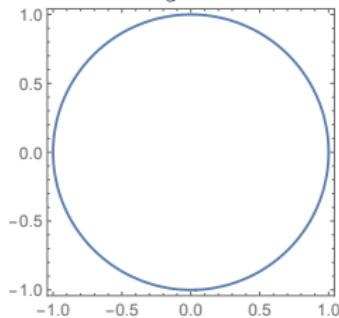
$$x^2/a^2 + y^2/b^2 = 1$$



Reminder: surfaces via implicit equations

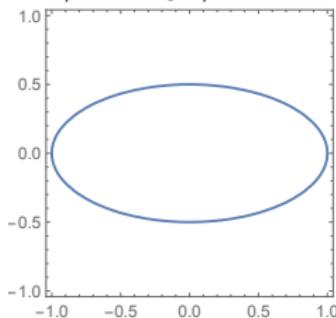
2D circle

$$x^2 + y^2 = 1$$



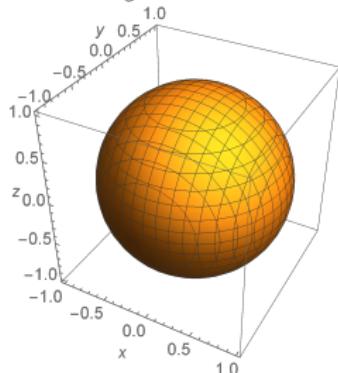
2D ellipse

$$x^2/a^2 + y^2/b^2 = 1$$



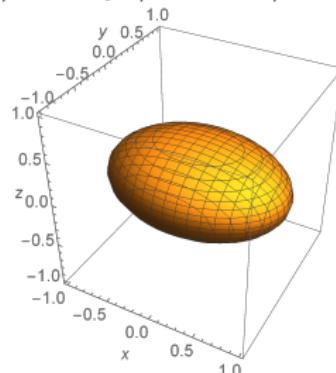
3D sphere

$$x^2 + y^2 + z^2 = 1$$



3D ellipsoid

$$x^2/a^2 + y^2/b^2 + z^2/c^2 = 1$$



Visualising tensors as surfaces

all $\vec{x} = (x, y, z)^T$ that produce a parallel component $\vec{x} \cdot \vec{v} = 1$

$$\text{all } \vec{x}: \quad \vec{x}^T \mathbf{T} \vec{x} = \vec{x} \cdot \underbrace{(\mathbf{T} \vec{x})}_{\vec{v}} = 1 \quad \text{for fixed } \mathbf{T}$$

points \vec{x} implicitly define a surface in 3D, representative of \mathbf{T}

Visualising tensors as surfaces

all $\vec{x} = (x, y, z)^T$ that produce a parallel component $\vec{x} \cdot \vec{v} = 1$

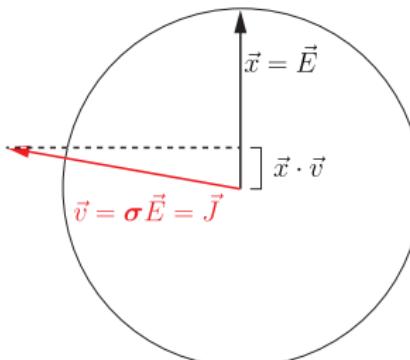
$$\text{all } \vec{x}: \quad \vec{x}^T \mathbf{T} \vec{x} = \vec{x} \cdot \underbrace{(\mathbf{T} \vec{x})}_{\vec{v}} = 1 \quad \text{for fixed } \mathbf{T}$$

points \vec{x} implicitly define a surface in 3D, representative of \mathbf{T}

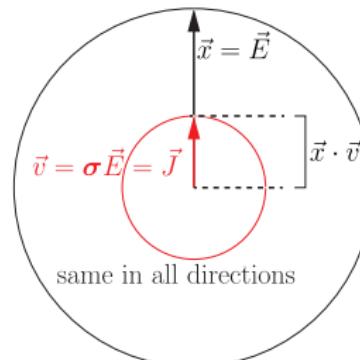
Example: apply electric field $\vec{E} = \vec{x}$

- then vector $\vec{v} = \sigma \vec{E} = \vec{J}$ is current density
- scalar product $\vec{x} \cdot \vec{v} = \vec{E} \cdot \vec{J}$ is magnitude of parallel component

Anisotropic



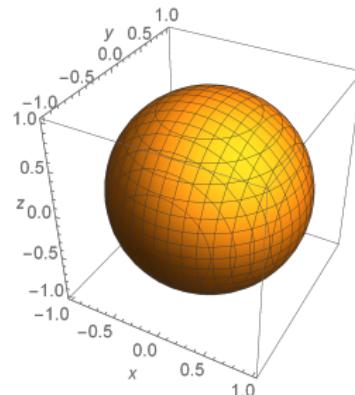
Isotropic



Examples of surfaces

isotropic material: T is scalar

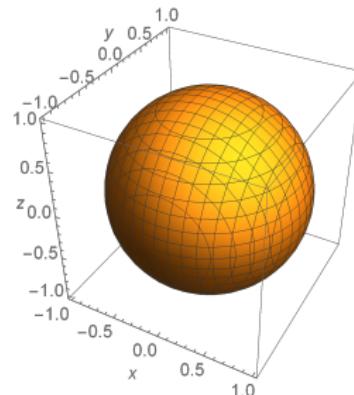
- simplifies $1 = \vec{x} \cdot (\mathbf{T}\vec{x}) = T\vec{x} \cdot \vec{x}$
- where $\vec{x} \cdot \vec{x} = x^2 + y^2 + z^2$
- surface: $1/T = x^2 + y^2 + z^2$
- sphere of radius $\sqrt{1/T}$



Examples of surfaces

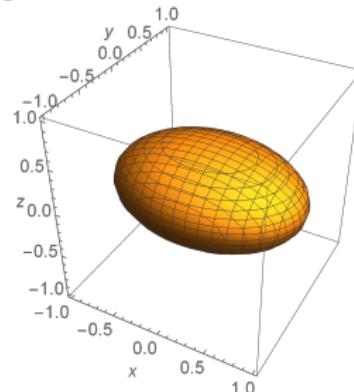
isotropic material: T is scalar

- simplifies $1 = \vec{x} \cdot (\mathbf{T}\vec{x}) = T\vec{x} \cdot \vec{x}$
- where $\vec{x} \cdot \vec{x} = x^2 + y^2 + z^2$
- surface: $1/T = x^2 + y^2 + z^2$
- sphere of radius $\sqrt{1/T}$



Principal Axis System and positive eigenvalues

- $\mathbf{T} = \text{diag}(\lambda_1, \lambda_2, \lambda_3)$
- then $\vec{v} = \mathbf{T}\vec{x} = (\lambda_1 x, \lambda_2 y, \lambda_3 z)^T$
- ellipsoid: $1 = \lambda_1 x^2 + \lambda_2 y^2 + \lambda_3 z^2$
- $a = \lambda_1^{-1/2}$, $b = \lambda_2^{-1/2}$, $c = \lambda_3^{-1/2}$



Representation quadratics

- T is symmetric \rightarrow eigenvalues $\lambda_1, \lambda_2, \lambda_3$ are real
- ellipsoid if and only if $\lambda_1, \lambda_2, \lambda_3 > 0$ are positive
- generalisation of ellipsoid: **quadric surfaces** in PAS as

$$1 = \lambda_1 x^2 + \lambda_2 y^2 + \lambda_3 z^2$$

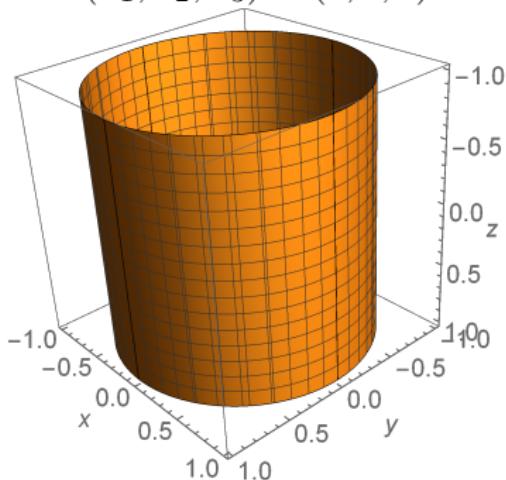
Representation quadratics

- T is symmetric \rightarrow eigenvalues $\lambda_1, \lambda_2, \lambda_3$ are real
- ellipsoid if and only if $\lambda_1, \lambda_2, \lambda_3 > 0$ are positive
- generalisation of ellipsoid: **quadric surfaces** in PAS as

$$1 = \lambda_1 x^2 + \lambda_2 y^2 + \lambda_3 z^2$$

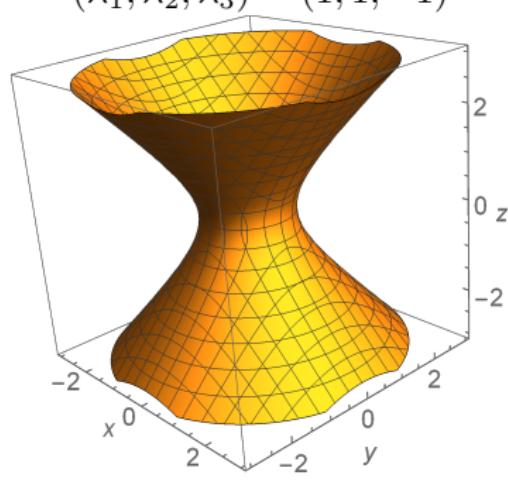
cylinder

one component zero
 $(\lambda_1, \lambda_2, \lambda_3) = (1, 1, 0)$



hyperboloid

one component negative
 $(\lambda_1, \lambda_2, \lambda_3) = (1, 1, -1)$



Rotational properties

start with: representation quadric of the tensor \mathbf{T}

$$1 = \vec{x}^T \mathbf{T} \vec{x} \quad \text{substitute diagonal } \mathbf{T} = \mathbf{L} \mathbf{D} \mathbf{L}^T$$

$$1 = (\mathbf{L}^T \vec{x})^T \mathbf{D} (\mathbf{L}^T \vec{x}) \quad \text{substitute new repr. coords. } \mathbf{L}^T \vec{x} = \vec{x}'$$

$$1 = (\vec{x}')^T \mathbf{D} \vec{x}' \quad \text{this is: representation quadric of diagonal } \mathbf{D}$$

any symm. tensor \mathbf{T} : take \mathbf{T} in PAS and rotate with eigenvectors

Rotational properties

start with: representation quadric of the tensor \mathbf{T}

$$1 = \vec{x}^T \mathbf{T} \vec{x}$$

substitute diagonal $\mathbf{T} = \mathbf{L} \mathbf{D} \mathbf{L}^T$

$$1 = (\mathbf{L}^T \vec{x})^T \mathbf{D} (\mathbf{L}^T \vec{x})$$

substitute new repr. coords. $\mathbf{L}^T \vec{x} = \vec{x}'$

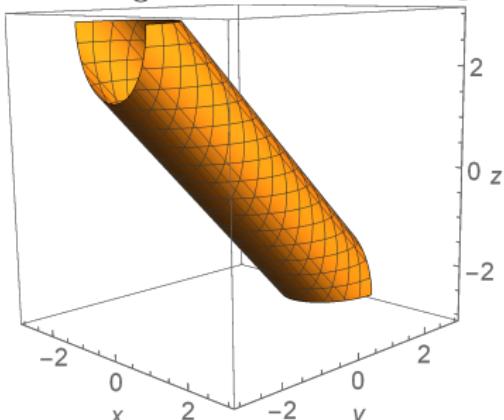
$$1 = (\vec{x}')^T \mathbf{D} \vec{x}'$$

this is: representation quadric of diagonal \mathbf{D}

any symm. tensor \mathbf{T} : take \mathbf{T} in PAS and rotate with eigenvectors

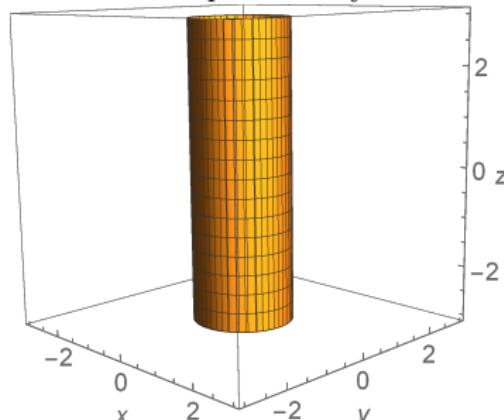
$$\mathbf{T} = \mathbf{L} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} \mathbf{L}^T$$

rotating \mathbf{D} with 45° around \vec{x}_1



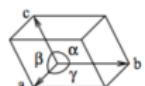
$$\mathbf{D} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

in Principal Axis System



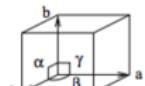
Neumann's principle: Any physical property of a crystal must include the symmetry elements of the point group of the crystal

- symmetry may be higher, i.e., more invariants, but must include at least those symmetry elements
- symmetry of a rank-2 tensor depends only on crystal system, but not on particular point groups
- representation surface of a tensor also inherits these symmetry components
- crystal symmetry axes determine principal directions, i.e., the principal axis system



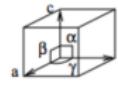
triclinic
(anorthic)

$$\begin{aligned} a &\neq b \neq c \neq a \\ \alpha &\neq \beta \neq \gamma \neq \alpha \end{aligned}$$



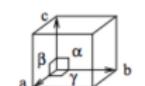
monoclinic

$$\begin{aligned} a &\neq b \neq c \neq a \\ \alpha &= \gamma = 90^\circ \\ \beta &\neq 90^\circ \end{aligned}$$



trigonal
hexagonal

$$\begin{aligned} a &= b \neq c \\ \alpha &= \beta = 90^\circ \\ \gamma &= 120^\circ \end{aligned}$$

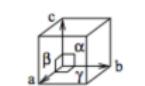


orthorhombic

$$\begin{aligned} a &\neq b \neq c \neq a \\ \alpha &= \beta = \gamma = 90^\circ \end{aligned}$$

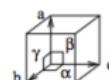
rhombohedral

$$\begin{aligned} a &= b = c \\ \alpha &= \beta = \gamma \neq 90^\circ \end{aligned}$$



tetragonal

$$\begin{aligned} a &= b \neq c \\ \alpha &= \beta = \gamma = 90^\circ \end{aligned}$$



cubic

$$\begin{aligned} a &= b = c \\ \alpha &= \beta = \gamma = 90^\circ \end{aligned}$$

Effect of crystal structure

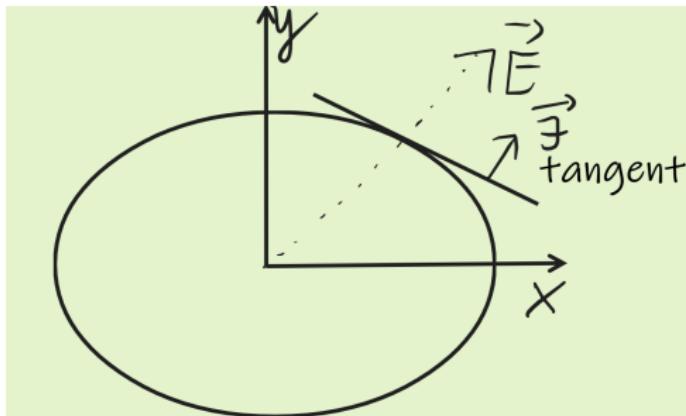
cryst. syst.	quadric orientation	params.	tensor
cubic	sphere	1	$\begin{bmatrix} T & 0 & 0 \\ 0 & T & 0 \\ 0 & 0 & T \end{bmatrix}$
tetragonal, hexagonal, trigonal	symm. around \vec{x}_3	2	$\begin{bmatrix} T_1 & 0 & 0 \\ 0 & T_1 & 0 \\ 0 & 0 & T_3 \end{bmatrix}$
orthorhombic	$\vec{x}_1, \vec{x}_2, \vec{x}_3$ parallel to diads	3	$\begin{bmatrix} T_1 & 0 & 0 \\ 0 & T_2 & 0 \\ 0 & 0 & T_3 \end{bmatrix}$
monoclinic	\vec{x}_2 parallel to diad	4	$\begin{bmatrix} T_{11} & 0 & T_{13} \\ 0 & T_{22} & 0 \\ T_{13} & 0 & T_{33} \end{bmatrix}$
triclinic	-	6	$\begin{bmatrix} T_{11} & T_{12} & T_{13} \\ T_{12} & T_{22} & T_{23} \\ T_{13} & T_{23} & T_{33} \end{bmatrix}$

- monoclinic: 3 eigenvalues + 1 angle
- triclinic: 3 eigenvalues + 3 angles
- others: crystal axes define tensor PAS

Radius normal property

- recall the representation quadric surface $1 = \vec{x}^T \boldsymbol{\sigma} \vec{x}$
- in PAS it is $1 = \sigma_1 x^2 + \sigma_2 y^2 + \sigma_3 z^2$ with conductivities $\sigma_1, \sigma_2, \sigma_3$
- the tangent plane vector is $\vec{t}(\vec{x}) = (2\sigma_1 x, 2\sigma_2 y, 2\sigma_3 z)^T$
- we compute as $\vec{t} = \vec{\nabla} F(x, y, z)$ where $0 = F(x, y, z) = \vec{x}^T \boldsymbol{\sigma} \vec{x} - 1$
- statement: $\vec{J} = \boldsymbol{\sigma} \vec{E}$ is parallel with $\vec{t}(\vec{E})$

$$\vec{J} = (\sigma_1 E_1, \sigma_2 E_2, \sigma_3 E_3)^T \quad \vec{t}(\vec{E}) = 2(\sigma_1 E_1, \sigma_2 E_2, \sigma_3 E_3)^T$$



Summary of lecture 3

Visualisation of tensors

- applicable to symmetric rank-2 tensors
- surface: collection of points that satisfy quadric equation
- depending on eigenvalues of tensor we get different quadrics
- quadric surfaces: sphere, ellipsoid, hyperboloid, cylinder etc.
- quadrics transform naturally when transforming tensors

Effect of crystal structure

- Neumann's principle: physical properties of crystals must include cryst. symmetries
- therefore tensors include crystal symmetries via eigenvalues and eigenvectors
- these symmetries are also included by representation quadrics

NOTICE OF LECTURE RECORDING

- This session is being recorded and will be available for students to view on-demand. The recording will be stored in the Panopto cloud and will be accessible using your SSO via Canvas/WebLearn (delete as appropriate). Access to this recording is restricted to students in this year group and registered on this course.
- Please be aware that all screen activity, including any active webcams/mics that are visible and/or audible, may be recorded.

For more information about lecture recording at the University, please consult the University's Lecture Recording Policy.

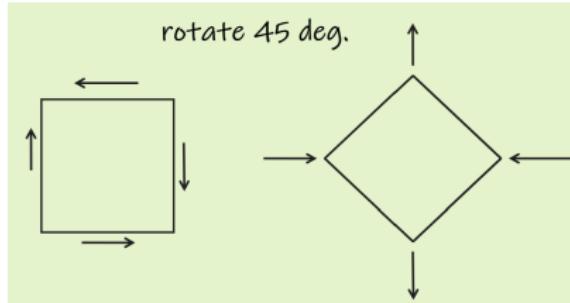
If you have any questions or concerns, please email replay@it.ox.ac.uk

Applications of tensors

- now equipped with mathematical tools
- illustrated concepts on linear response in anisotropic materials
- tensors expressed properties of materials
- example $\vec{J} = \sigma \vec{E}$

some more advanced applications of tensors

- mechanical stress and strain: tensor no longer property
- thermal expansion: cause is scalar
- stiffness via Hooke's law: tensor no longer rank 2

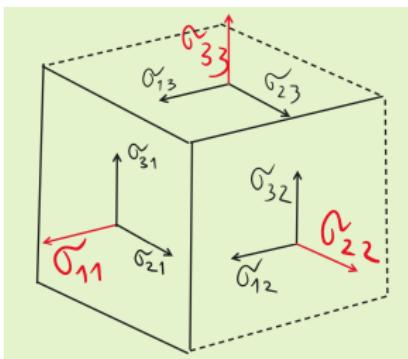


Stress tensor

- take any infinitesimally small cube of material
- traction vector \vec{T} is force per unit area
- that acts on the plane represented by area vector \vec{n}

$$\vec{T} = \boldsymbol{\sigma} \vec{n} \quad T_i = \sigma_{ij} n_j$$

- above guarantees rotational property $\boldsymbol{\sigma}' = \mathbf{L} \boldsymbol{\sigma} \mathbf{L}^T$ via Slide 19
- stress tensor is not a property of material: rather a variable
- equilibrium: tensile stresses equal but opposite $\boldsymbol{\sigma}(-\vec{n}) = -\vec{T}$



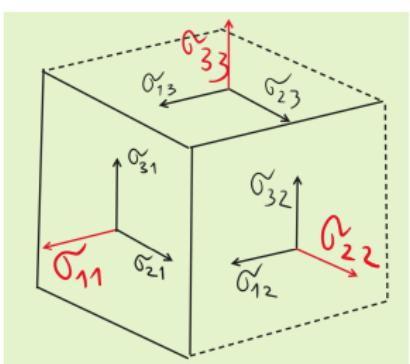
Stress tensor

- take any infinitesimally small cube of material
- traction vector \vec{T} is force per unit area
- that acts on the plane represented by area vector \vec{n}

$$\vec{T} = \sigma \vec{n} \quad T_i = \sigma_{ij} n_j$$

- above guarantees rotational property $\sigma' = \mathbf{L} \sigma \mathbf{L}^T$ via Slide 19
- stress tensor is not a property of material: rather a variable
- equilibrium: tensile stresses equal but opposite $\sigma(-\vec{n}) = -\vec{T}$

Warning: row vector convention



- often **row vectors** as $\vec{T}^T = \vec{n}^T \sigma_{row}$
- need to use transpose $\sigma_{row} = \sigma^T$
- need to use inverse rotation \mathbf{L}^T for row vectors
- possible confusion: \mathbf{L}^T is inverse rotation in our convention

Equilibrium: conservation of angular momentum

- decompose any matrix into symm. and antisymm. $\sigma = \sigma^s + \sigma^a$
- we can define $2\sigma^s = \sigma + \sigma^T$ and $2\sigma^a = \sigma - \sigma^T$
- **Cauchy:** conservation of ang. mom. $\sigma \equiv \sigma^s$ is symmetric

$$\begin{bmatrix} \sigma_{11} & \sigma_{12} & \sigma_{13} \\ \sigma_{21} & \sigma_{22} & \sigma_{23} \\ \sigma_{31} & \sigma_{32} & \sigma_{33} \end{bmatrix} =$$

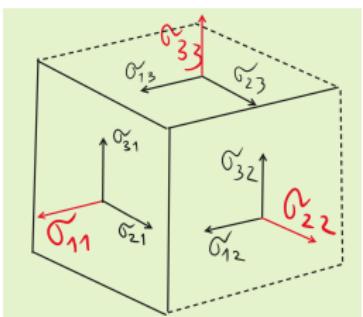
Equilibrium: conservation of angular momentum

- decompose any matrix into symm. and antisymm. $\sigma = \sigma^s + \sigma^a$
- we can define $2\sigma^s = \sigma + \sigma^T$ and $2\sigma^a = \sigma - \sigma^T$
- **Cauchy:** conservation of ang. mom. $\sigma \equiv \sigma^s$ is symmetric

$$\begin{bmatrix} \sigma_{11} & \sigma_{12} & \sigma_{13} \\ \sigma_{21} & \sigma_{22} & \sigma_{23} \\ \sigma_{31} & \sigma_{32} & \sigma_{33} \end{bmatrix} = \underbrace{\begin{bmatrix} \sigma_{11} & 0 & 0 \\ 0 & \sigma_{22} & 0 \\ 0 & 0 & \sigma_{33} \end{bmatrix}}_{\text{tensile}}$$

positive: tensile

negative: compressive



Equilibrium: conservation of angular momentum

- decompose any matrix into symm. and antisymm. $\sigma = \sigma^s + \sigma^a$
- we can define $2\sigma^s = \sigma + \sigma^T$ and $2\sigma^a = \sigma - \sigma^T$
- Cauchy:** conservation of ang. mom. $\sigma \equiv \sigma^s$ is symmetric

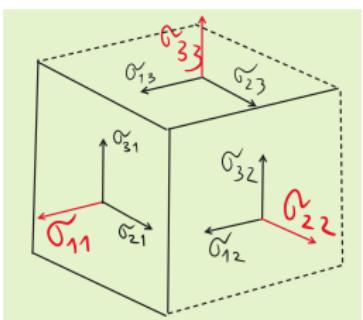
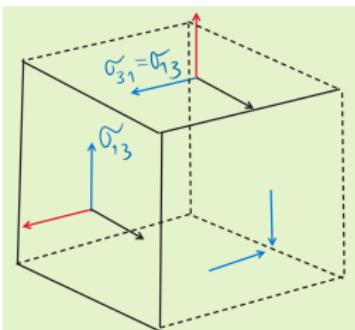
$$\begin{bmatrix} \sigma_{11} & \sigma_{12} & \sigma_{13} \\ \sigma_{21} & \sigma_{22} & \sigma_{23} \\ \sigma_{31} & \sigma_{32} & \sigma_{33} \end{bmatrix} = \underbrace{\begin{bmatrix} \sigma_{11} & 0 & 0 \\ 0 & \sigma_{22} & 0 \\ 0 & 0 & \sigma_{33} \end{bmatrix}}_{\text{tensile}} + \underbrace{\begin{bmatrix} 0 & \sigma_{12}^s & \sigma_{13}^s \\ \sigma_{12}^s & 0 & \sigma_{23}^s \\ \sigma_{13}^s & \sigma_{23}^s & 0 \end{bmatrix}}_{\text{shear}}$$

positive: tensile

shear stress

negative: compressive

conserves ang. mom.



Equilibrium: conservation of angular momentum

- decompose any matrix into symm. and antisymm. $\sigma = \sigma^s + \sigma^a$
- we can define $2\sigma^s = \sigma + \sigma^T$ and $2\sigma^a = \sigma - \sigma^T$
- Cauchy:** conservation of ang. mom. $\sigma \equiv \sigma^s$ is symmetric

$$\begin{bmatrix} \sigma_{11} & \sigma_{12} & \sigma_{13} \\ \sigma_{21} & \sigma_{22} & \sigma_{23} \\ \sigma_{31} & \sigma_{32} & \sigma_{33} \end{bmatrix} = \underbrace{\begin{bmatrix} \sigma_{11} & 0 & 0 \\ 0 & \sigma_{22} & 0 \\ 0 & 0 & \sigma_{33} \end{bmatrix}}_{\text{tensile}} + \underbrace{\begin{bmatrix} 0 & \sigma_{12}^s & \sigma_{13}^s \\ \sigma_{12}^s & 0 & \sigma_{23}^s \\ \sigma_{13}^s & \sigma_{23}^s & 0 \end{bmatrix}}_{\text{shear}} + \underbrace{\begin{bmatrix} 0 & \sigma_{12}^a & \sigma_{13}^a \\ -\sigma_{12}^a & 0 & \sigma_{23}^a \\ -\sigma_{13}^a & -\sigma_{23}^a & 0 \end{bmatrix}}_{\text{rotation}}$$

positive: tensile

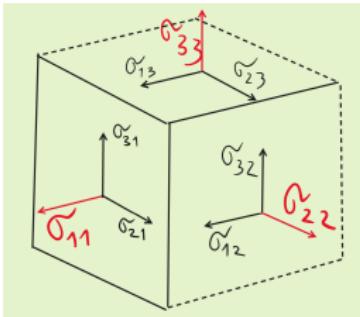
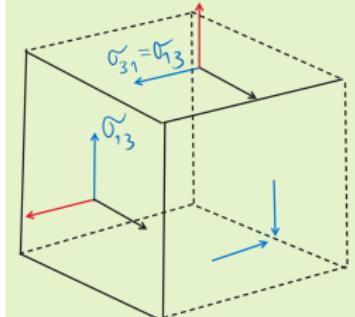
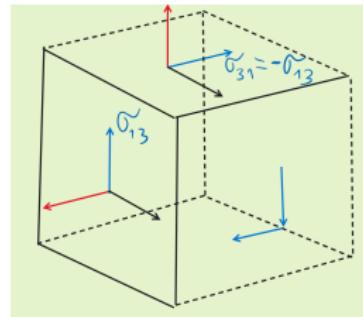
negative: compressive

shear stress

conserves ang. mom.

rotation of the cube

zero in equilibrium



Principal stresses

- in equilibrium we can diagonalise $\sigma = \sigma^T$
- but σ is not property of material: eigenvectors not necessarily related to crystal axes

stress type	principal comps.	example	tensor
triaxial	3 non-zero σ_k	-	$\text{diag}(\sigma_1, \sigma_2, \sigma_3)$
biaxial	2 non-zero σ_k	force on thin plate	$\text{diag}(\sigma_1, \sigma_2, 0)$
uniaxial	1 non-zero σ_k	pulling wire	$\text{diag}(\sigma_1, 0, 0)$
hydrostatic	3 identical $\sigma_k < 0$	pressure p in fluid	$\text{diag}(-p, -p, -p)$
pure shear	special biaxial	rod torsion	$\text{diag}(-\sigma, \sigma, 0)$

Principal stresses

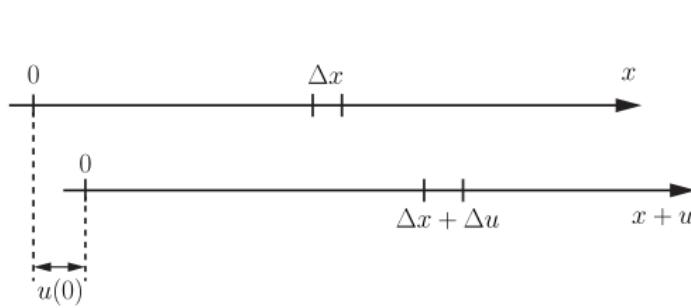
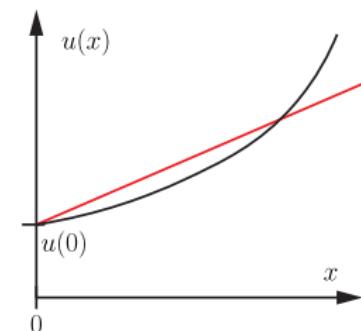
- in equilibrium we can diagonalise $\sigma = \sigma^T$
- but σ is not property of material: eigenvectors not necessarily related to crystal axes

stress type	principal comps.	example	tensor
triaxial	3 non-zero σ_k	-	$\text{diag}(\sigma_1, \sigma_2, \sigma_3)$
biaxial	2 non-zero σ_k	force on thin plate	$\text{diag}(\sigma_1, \sigma_2, 0)$
uniaxial	1 non-zero σ_k	pulling wire	$\text{diag}(\sigma_1, 0, 0)$
hydrostatic	3 identical $\sigma_k < 0$	pressure p in fluid	$\text{diag}(-p, -p, -p)$
pure shear	special biaxial	rod torsion	$\text{diag}(-\sigma, \sigma, 0)$

remark: how 'big' is the stress? no obvious metric as with vectors
 matrix invariants: $\text{Tr}(A)$, determinant and matrix norms as $\text{Tr}(A^T A)$

Strain in 1D

length of small element Δx increases due to stretching as $\Delta x + \Delta u$



$$\text{strain} = \frac{\text{increase in length}}{\text{original length}} = \lim_{\Delta x \rightarrow 0} \frac{\Delta u}{\Delta x} = \frac{du}{dx}$$

- small element $(x, x + \Delta x)$ is increased to $(x + u, x + \Delta x + u + \Delta u)$
- strain ϵ is the derivative of displacement $u(x)$ wrt. position x
- **homogeneous**: derivative constant, global property
- Taylor expansion in homogeneous case: $u(x) - u(0) = \epsilon x$

Strain in 3D

- need to use vectors $\vec{u} = (u_1, u_2, u_3)^T$ and $\vec{x} = (x_1, x_2, x_3)^T$
- tensor: partial derivatives of displacement field wrt position

$$\tilde{\epsilon}_{ij} = \frac{\partial u_i}{\partial x_j}$$

- as before, antisymmetric part $(\tilde{\epsilon}_{ij} - \tilde{\epsilon}_{ji})/2$ is rotation

Strain in 3D

- need to use vectors $\vec{u} = (u_1, u_2, u_3)^T$ and $\vec{x} = (x_1, x_2, x_3)^T$
- tensor: partial derivatives of displacement field wrt position

$$\tilde{\epsilon}_{ij} = \frac{\partial u_i}{\partial x_j}$$

- as before, antisymmetric part $(\tilde{\epsilon}_{ij} - \tilde{\epsilon}_{ji})/2$ is rotation
- strain is a symmetric, rank-2 tensor

$$\epsilon_{ij} = \left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right) / 2$$

$$\epsilon = \underbrace{\begin{bmatrix} \epsilon_{11} & 0 & 0 \\ 0 & \epsilon_{22} & 0 \\ 0 & 0 & \epsilon_{33} \end{bmatrix}}_{\text{uniaxial extension}} + \underbrace{\begin{bmatrix} 0 & \epsilon_{12} & \epsilon_{13} \\ \epsilon_{12} & 0 & \epsilon_{23} \\ \epsilon_{13} & \epsilon_{23} & 0 \end{bmatrix}}_{\text{shear}}$$

- diagonals ϵ_{11} , ϵ_{22} , ϵ_{33} are uniaxial extensions per unit length
- off-diagonals are shear strains – coordinate syst. dependent
- homogeneous case: $\vec{u}(\vec{x}) - \vec{u}(0) = \epsilon \vec{x}$

Pure shear stress and strain

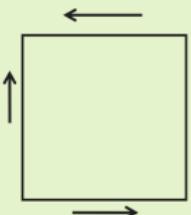
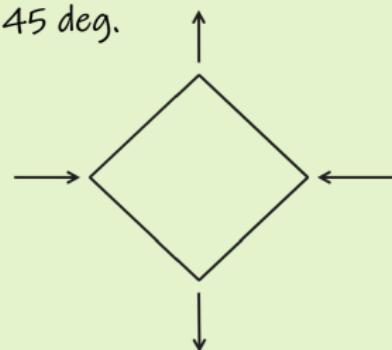
assume the pure shear stress and strain tensors

$$\boldsymbol{\sigma} = \begin{bmatrix} 0 & \sigma & 0 \\ \sigma & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \quad \boldsymbol{\epsilon} = \begin{bmatrix} 0 & \epsilon & 0 \\ \epsilon & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

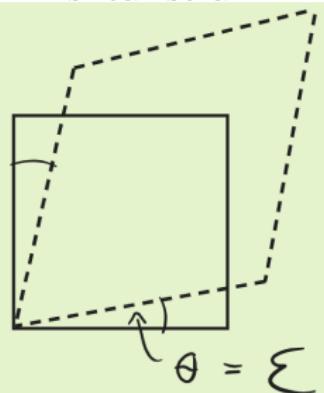
- both can be diagonalised by a 45° rotation of the coord. syst.
- two eigenvalues $\pm\sigma$ and $\pm\epsilon$
- for strain $\epsilon = \epsilon_{12} = (\frac{\partial u_1}{\partial x_2} + \frac{\partial u_2}{\partial x_1})/2 = \tan(\theta) \approx \theta$

shear stress

rotate 45 deg.



shear strain



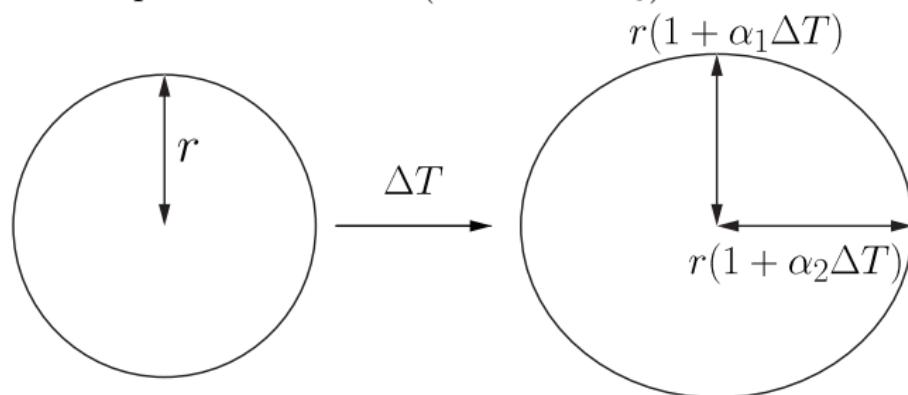
Strain tensor via thermal expansion

- material is heated up uniformly by ΔT
- strain tensor is proportional to this temperature
- proportionality: symmetric thermal expansion coefficients α_{ij}

$$\epsilon = \alpha \Delta T \quad \epsilon_{ij} = \alpha_{ij} \Delta T$$

Strain tensor via thermal expansion

- material is heated up uniformly by ΔT
- strain tensor is proportional to this temperature
- proportionality: symmetric thermal expansion coefficients α_{ij}
$$\epsilon = \alpha \Delta T \quad \epsilon_{ij} = \alpha_{ij} \Delta T$$
- eigenvalues and eigenvectors contain crystal symmetries
- principal components $\epsilon_i = \alpha_i \Delta T$, e.g., along crystal axes
- α_i are typically positive, but can be negative
- volume expansion is $\Delta V \approx (\alpha_1 + \alpha_2 + \alpha_3)V\Delta T$ an invariant



Hooke's law and linear elasticity

in case of a 1D spring we have Hooke's law

$$F = kx$$

- can relate stress and strain in an elastic material
- linear mapping via rank-4 stiffness tensor c_{ijkl}

$$\sigma_{ij} = c_{ijkl} \epsilon_{kl}$$

Hooke's law and linear elasticity

in case of a 1D spring we have Hooke's law

$$F = kx$$

- can relate stress and strain in an elastic material
- linear mapping via rank-4 stiffness tensor c_{ijkl}

$$\sigma_{ij} = c_{ijkl} \epsilon_{kl}$$

- c_{ijkl} may generally have $3^4 = 81$ entries, but reduces to 21
- example: $\sigma_{ij} = \sigma_{ji}$, therefore $c_{ijkl} = c_{jikl}$
- example: $\epsilon_{kl} = \epsilon_{lk}$, therefore $c_{ijkl} = c_{ijlk}$
- in crystals this further reduces due to symmetries in ϵ_{kl}
- orthorhombic crystals: 9 entries, hexagonal crystals: 5, cubic: 3